Thermal and Statistical Physics I

CLASS DATE		TOPICS	Homework Due Dates	CALLEN READINGS (READ AHEAD)
JAN	13	INTRODUCTORY COMMENTS, COURSE OUTLINE		
	15	THE FOUR POSTULATES:		1.1-6
	17	THE BASIC PROBLEM OF THERMODYNAMICS		1.7-10
	20	Martin Luther King Day – no class		
	22	CONDITIONS OF EQUILIBRIUM: EQUATIONS OF STATE		2.1-3
	24	KINDS OF EQUILIBRIUM (MECHANICAL, THERMAL, CHEMICAL)		2.4-9
	27	FORMAL RELATIONS; IDEAL GAS		3.1-4
	29	VAN DER WAALS FLUID, ELECTROMAGNETIC RADIATION, RUBBER BAND	1: CHAP 1-2	3.5-7
	31	MAGNETIC SYSTEMS, HEAT CAPACITY AND OTHER DERIVS		3.8-9
Feb	3	REVERSIBLE PROCESSES: HEAT ENGINES		4.1-4
	5	MAXIMUM WORK THEOREM, CARNOT AND OTHER THERMODYNAMIC CYCLES	2: Chap 3	4.5-10
	7	ALTERNATE FORMULATIONS VIA LEGENDRE TRANSFORMATIONS		5.1-2
	10	EXAM. CHAPTERS 1-3 (7-9 PM. REVIEW DURING CLASS)	Exam 1	
	12	THERMODYNAMIC POTENTIALS		5.3-4
	14	HELMHOLTZ, GIBBS POTENTIALS, CHEMICAL REACTIONS		6.1-4
	17	PRESIDENT'S DAY NO CLASS		0.1
	19	Enthalpy		6 5-7
	21	MAXWELL RELATIONS		7 1-3
	21	APPLICATIONS OF MAXWELL RELATIONS	3. Снар 4-6	7.4-5
	26	STATISTICAL MECHANICS IN MICPOCANONICAL EOPMALISM: ENTROPY SIMPLE MODELS	5. Cliffi + 0	15.1-3
	20	DOLYMED MODEL HICH DIMENSIONALITY	-	15.4-5
MAD	20	TOUTMER MODEL, MOD DIMENSIONALITT		2 2
WIAK	5	FIDST. ODDED DUAGE TDANSITIONS	4. CHAP 7 15	01_3
	- 5 - 7		4. CHAP 7,13	9.1-5
	10	FYAM CHAPTERS 4.7 AND 15 (7.0 DM, DEVIEW DUDING CLASS)	EYAM 2	9.4-0
	10	DHASE DIACDAMS OF DINADA SYSTEMS (TEMD, DESSURE MOLE FRACTION)	LAAM 2	0.7
	12	CDITICAL DUENOMENA: ODDED DADAMETEDS		10.1.2
	14	CRITICAL FHENOMENA, ORDER PARAMETERS		10.1-5
	24			10.4.6
	24	LANDAU THEORY, SCALING AND UNIVERSALITY OF CRITICAL BEHAVIOR		10.4-0
	20	NERNST POSTULATE. UNATTAINABILITY OF ABSOLUTE ZERO	5. CHAD 8 10	11
	20	SUMMING UP OF THE PRINCIPLES OF THERMODYNAMICS	J: CHAP 8-10	12
		PROPERTIES OF MATERIALS: REACTIONS IN IDEAL GASES		13.1-2
APR		DILUTE SOLUTIONS		15.3-0
	4	CANONICAL FORMALISM: STATISTICAL MECHANICS IN HELMHOLTZ REPRESENTATION	(Crys 11, 12	16.1-4
	/		0:CHAP 11-13	10.3-/
	<u> </u>	ELECTROMAGNETIC RADIATION; CLASSICAL IDEAL GAS		10.8-11
	11	ENTROPY AND DISORDER: GRAND CANONICAL FORMULATION	D	1/
	14	EXAM, CHAPTERS 5-13 (7-9 PM, REVIEW DURING CLASS)	EXAM 3	10.1.4
	10	QUANTUM FLUIDS: FERMIONS, ELECTRONS IN A METAL		18.1-4
	18	BUSUNS	/:CHAP 16-17	18.5-/
	21			19
	23	BOGOLIUBOV VARIATIONAL THEOREM; MIEAN FIELD THEORY	0 Crave 10 10	20
	25	IRREVERSIBLE THERMODYNAMICS	8:CHAP 18-19	14
	28	SYMMETRY AND FOUNDATIONS OF THERMOSTATISTICS		21
M · · ·	30	TO BE ANNOUNCED		
IVIAY	2		Design	
MAY	8	FINAL EXAM (1HURSDAY, MAY 8, 7-10 AM WITH UNVERSAL CONSENT)	FINAL EXAM	

<u>Text</u>: Callen, <u>Thermodynamics and an Introduction to Thermostatistics</u>, (Wiley, 2nd ed., 1985) <u>Exams</u> will be on Monday evenings from 7-9 pm, with the class period that day used for review. This schedule is tentative and subject to changes and/or correction without notice.