Homework Set \#1 Key

1. (a) $p^{\prime}=P_{A A}+\left(\frac{1}{2}\right) P_{A a}=p_{m} p_{f}+\left(\frac{1}{2}\right)\left[p_{m}\left(1-p_{f}\right)+p_{f}\left(1-p_{m}\right)\right]=\left(\frac{1}{2}\right)\left(p_{m}+p_{f}\right)$, the even average of the parental allele frequencies. This makes sense because mothers and fathers contribute equally to autosomal genotypes of their offspring.
(b) No. For example, if $p_{f}=0$ and $p_{m}=1$, then $P_{A A}=P_{a a}=0$ and $P_{A a}=1$, which are not Hardy-Weinberg proportions. (Why?)
(c) Because all the Hardy-Weinberg conditions hold for the offspring generation, the frequency of A will remain at $p=\left(p_{f}+p_{m}\right) / 2$ in their descendants with genotype frequencies in Hardy-Weinberg proportions AA p^{2} : Aa $2 p(1-p)$: aa $(1-p)^{2}$.
2. (a) Since 215 diploid people were sampled, the total alleles per locus samples was $2 \cdot 215=$ 430.

At D2S44: $p_{A_{7}}=15 / 430=.035, p_{A_{8}}=18 / 430=.042, p_{A_{9}}=60 / 430=.140$.
At D4S139: $p_{B_{21}}=11 / 430=.026, p_{B_{26}}=81 / 430=.188$.
(b) Freq $\left(\mathrm{A}_{7} \mathrm{~A}_{7}\right)=\left(p_{A_{7}}\right)^{2}=(.035)^{2}=.0012$; Freq $\left(\mathrm{B}_{21} \mathrm{~B}_{26}\right)=2 p_{B_{21}} p_{B_{26}}=2(.026)(.188)=$. 0098.
(c) Freq $\left(\mathrm{A}_{7} \mathrm{~B}_{21} / \mathrm{A}_{7} \mathrm{~B}_{26}\right)=2 P_{A_{7} B_{21}} P_{A_{7} B_{26} \text { assuming }}=2\left(p_{A_{7}} p_{B_{21}}\right)\left(p_{A_{7}} p_{B_{26}}\right)=2(.035)(.026)(.035)(.188)=$
1.2×10^{-5}. Freq $\left(\mathrm{A}_{7} \mathrm{~B}_{21} / \mathrm{A}_{8} \mathrm{~B}_{26}\right)=2 P_{A_{7} B_{21}} P_{A_{8} B_{26} \text { assuming }}=2\left(p_{A_{7}} p_{B_{21}}\right)\left(p_{A_{8}} p_{B_{26}}\right)=$
$2(.035)(.026)(.042)(.188)=1.4 \times 10^{-5}$.
(d) Departures from H-W equilibrium and LE could lead to on- and two-locus frequencies that are higher or lower than those estimated above. For example, if all heterozygous
genotypes with A_{7} were lethal, the $\operatorname{Freq}\left(\mathrm{A}_{7} \mathrm{~A}_{7}\right)=p_{A_{7}}=.035>\left(p_{A_{7}}\right)^{2}=.0012$, the latter of which would be estimated using $\mathrm{H}-\mathrm{W}$ equilibrium.
(e) $\operatorname{Freq}\left(\mathrm{A}_{7} \mathrm{~B}_{21} / \mathrm{A}_{7} \mathrm{~B}_{26}\right)=2(.106)(.069)(.106)(.138)=2.1 \times 10^{-4}$.
(f) Comparing (e) and (c), we can see that subgroups can differ in STRP genotype frequencies (in this case, by more than an order of magnitude). If a suspect were compared against the wrong subgroup, the "rareness" of a DNA fingerprint might be substantially overor underestimated.
3. p. $107 \# 3: p_{m}=.8, p_{f}=.4$
$P^{\prime}=p_{m} p_{f}=(.8)(.4)=.32$
$H^{\prime}=p_{m} q_{f}+q_{m} p_{f}=(.8)(.6)+(.2)(.4)=.48+.08=.56$
$Q^{\prime}=1-P^{\prime}-H^{\prime}=1-.32-.56=.12$
$\Rightarrow p_{m}^{\prime}=p_{f}^{\prime}=p^{\prime}=(.32)+\frac{1}{2}(.56)=.6\left(=\frac{p_{m}+p_{f}}{2}\right)$.

$$
\begin{aligned}
& P^{\prime \prime}=\left(p^{\prime}\right)^{2}=(.6)^{2}=.36 \\
& H^{\prime \prime}=2 p^{\prime} q^{\prime}=2(.6)(.4)=.48 \\
& Q_{* * *}^{\prime \prime}=1-.36-.48=.16 \\
& \begin{aligned}
H-2 \bar{p} \bar{q} & =\left(p_{m} q_{f}+p_{f} q_{m}\right)-2\left(\frac{p_{f}+p_{m}}{2}\right)\left(\frac{q_{f}+q_{m}}{2}\right) \\
& =p_{m} q_{f}+p_{f} q_{m}-\frac{1}{2}\left(p_{f} q_{f}+p_{f} q_{m}+p_{m} q_{f}+p_{m} q_{m}\right) \\
& =\frac{1}{2}\left(p_{f} q_{m}+p_{m} q_{f}-p_{m} q_{m}-p_{f} q_{f}\right)=\frac{1}{2}\left[p_{m}\left(q_{f}-q_{m}\right)-p_{f}\left(q_{f}-q_{m}\right)\right] \\
& =\frac{1}{2}\left[p_{m}\left(p_{m}-p_{f}\right)-p_{f}\left(p_{m}-p_{f}\right)\right]=\frac{1}{2}\left(p_{m}-p_{f}\right)^{2} \\
Q-\bar{q}^{2}= & q_{m} q_{f}-\left(\frac{q_{f}+q_{m}}{2}\right)^{2}=q_{m} q_{f}-\frac{1}{4}\left(q_{f}^{2}+2 q_{f} q_{m}+q_{m}^{2}\right) \\
& =-\frac{1}{4}\left(q_{m}^{2}-2 q_{m} q_{f}+q_{f}^{2}\right)=-\frac{1}{4}\left(q_{m}-q_{f}\right)^{2}=-\frac{1}{4}\left(p_{f}-p_{m}\right)^{2}
\end{aligned}
\end{aligned}
$$

4. p. 107 \#4:

Generation	0	1	2	3	4
p_{f}	.3	$(.3+0) / 2=$	$(.15+.3) / 2=$	$(.225+.15) / 2$	$(.1875+.225) / 2$
		.15	.225	$=.1875$	$=.20625$
p_{m}	0	.3	.15	.225	.1875

$\left|d_{t}\right|=\left(\frac{1}{2}\right)^{t}\left|d_{0}\right|$. Find t such that $\left(\frac{1}{2}\right)^{t} \cdot .3-\frac{1 \cdot(0)+2 \cdot(.3)}{3} \left\lvert\, \leq .001 \Rightarrow\left(\frac{1}{2}\right)^{t}(.1) \leq .001 \Rightarrow\left(\frac{1}{2}\right)^{t} \leq .01 \Rightarrow\right.$ $t \ln (1 / 2) \leq \ln (.01) \Rightarrow t \geq \frac{\ln (.01)}{\ln (1 / 2)}=6.64$ generations. Thus, p_{f} will deviate less than .001 from $\bar{p}=\left(\frac{1}{3}\right)(0)+\left(\frac{2}{3}\right)(.3)=.2$ by generation 7.
5. p. $108 \# 8: q^{2}=1 / 2500 \Rightarrow \hat{q}=1 / 50=.02$. Heterozygote frequency $=2(.98)(.02)=.0392$. The total frequency of carriers $=q^{2}+2 p q$ so the frequency of matings between carriers is $\left(q^{2}+2 p q\right)^{2}=\left(q^{2}\right)^{2}+2(2 p q)\left(q^{2}\right)+(2 p q)^{2}=(1 / 2500)^{2}+2(.0392)(1 / 2500)+(.0392)^{2}=.00157$. [Note: this is approximately equal to $(.0392)^{2}=.00154$. That is, almost all $(>98 \%)$ matings among carriers are between heterozygotes.]
6. p. $108 \# 13$:

$$
\begin{aligned}
\hat{\pi} & =\frac{N}{N-1} \sum_{i j} \hat{p}_{i} \hat{p}_{j} \pi_{i j}=\frac{5}{4}\left[\hat{p}_{1} \hat{p}_{2} \pi_{12}+\hat{p}_{1} \hat{p}_{3} \pi_{13}+\hat{p}_{2} \hat{p}_{1} \pi_{21}+\hat{p}_{2} \hat{p}_{3} \pi_{23}+\hat{p}_{3} \hat{p}_{1} \pi_{31}+\hat{p}_{3} \hat{p}_{2} \pi_{32}\right] \\
& =\frac{5}{4}\left[2 \hat{p}_{1} \hat{p}_{2} \pi_{12}+2 \hat{p}_{1} \hat{p}_{3} \pi_{13}+2 \hat{p}_{2} \hat{p}_{3} \pi_{23}\right] \quad \text { since } \pi_{i j}=\pi_{j i} \\
& =\frac{5}{4}\left[2\left(\frac{2}{5}\right)\left(\frac{2}{5}\right)\left(\frac{4}{15}\right)+2\left(\frac{2}{5}\right)\left(\frac{1}{5}\right)\left(\frac{4}{15}\right)+2\left(\frac{2}{5}\right)\left(\frac{1}{5}\right)\left(\frac{8}{15}\right)\right]=.267 \\
\hat{p}_{S} & =8 / 15 .
\end{aligned}
$$

7. p. $109 \# 16: \quad \hat{p}_{1}=\hat{p}_{2}=\hat{p}_{3}=\hat{p}_{4}=1 / 4 . \quad \pi_{12}=1 / 900, \pi_{13}=4 / 900, \pi_{14}=2 / 900, \pi_{23}=5 / 900$, $\pi_{24}=6 / 900$, and $\pi_{34}=10 / 900$.
$\hat{\pi}=\frac{N}{N-1} \sum_{i j} \hat{p}_{i} \hat{p}_{j} \pi_{i j}=\frac{4}{3} \sum_{i j}\left(\frac{1}{4}\right)\left(\frac{1}{4}\right) \pi_{i j}=\frac{4 \cdot 2}{3 \cdot 4 \cdot 4 \cdot 900}(1+4+2+5+6+10)=.00519$. [Note:
the factor 2 is needed because each difference is counted twice since, in the summation $\pi_{12}=\pi_{21}, \pi_{13}=\pi_{31}, \ldots, \pi_{34}=\pi_{43}$.
8. (a) Only Ab and aB gametes are present and every individual carries one of each. So $\mathrm{D}=$ $\mathrm{P}_{\mathrm{AB}} \mathrm{P}_{\mathrm{ab}}-\mathrm{P}_{\mathrm{Ab}} \mathrm{P}_{\mathrm{aB}}=0 * 0-(1 / 2)(1 / 2)=-1 / 4$.
(b) Every individual produces $(1-1 / 4) / 2 \mathrm{Ab},(1-1 / 4) / 2 \mathrm{aB},(1 / 4) / 2 \mathrm{AB}$, and $(1 / 4) / 2 \mathrm{ab}$ gametes. So $P_{A B}^{\prime}=1 / 8, P_{a b}^{\prime}=1 / 8, P_{A b}^{\prime}=3 / 8$, and $P_{a B}^{\prime}=3 / 8$, which implies
$D^{\prime}=(1 / 8)(1 / 8)-(3 / 8)(3 / 8)=-1 / 8$.
(c) The F_{1} generation is formed by random mating so, as shown in class, $P_{A B}^{\prime \prime}=P_{A B}^{\prime}-r D=(1 / 8)-(1 / 4)(-1 / 8)=5 / 32$
$P_{a b}^{\prime \prime}=P_{a b}^{\prime}-r D=(1 / 8)-(1 / 4)(-1 / 8)=5 / 32$
$P_{A b}^{\prime \prime}=P_{A b}^{\prime}+r D=(3 / 8)+(1 / 4)(-1 / 8)=11 / 32$
and
$P_{a B}^{\prime \prime}=P_{a B}^{\prime}+r D=(3 / 8)+(1 / 4)(-1 / 8)=11 / 32$
\Rightarrow
$D^{\prime \prime}=P_{A B}^{\prime \prime} P_{a b}^{\prime \prime}-P_{A b}^{\prime \prime} P_{a B}^{\prime \prime}=(5 / 32)(5 / 32)-(11 / 32)(11 / 32)=-3 / 32$
(d) The F_{1} generation was formed by random mating so the reduction of disequilibrium by the factor $(1-r)=(1-1 / 4)$ applies. By contrast, the original (parental) generation could not have been formed by random mating since, e.g., there are no $\mathrm{Ab} / \mathrm{Ab}$ homozygotes. The reduction of disequilibrium by $(1-r)$ does not apply in this case. This exercise illustrates that the recursion $D^{\prime}=(1-r) D$ applies only if the population for which D is computed was formed by random mating.
