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Homework #2 Answer Key 
 
1.  Lumped heterozygosity = 

! 

2p q " 2var p( ) where 

! 

p = .2 + .4( ) 2 = .3 , 

! 

q =1" .3 = .7, 
and 

! 

var p( ) = .22 + .42( ) 2 " .3( )2 = .01 ⇒ lumped heterozygosity = 

! 

2 .3( ) .7( ) " 2 .01( ) = .4 . 
The expected heterogyzosity if one random mating population = 

! 

2p q = 2 .3( ) .7( ) = .42.  
⇒ observed heterozygosity < expected heterozygosity. 

! 

H i observed( ) = 2p i p j + 2cov pi, p j( )  ⇒ 

! 

H 12 observed( ) = 2p 1p 2 + 2cov p1, p2( ) .  

! 

p 1 = .2 + .6( ) 2 = .4 , 

! 

p 2 = .4 + .2( ) 2 = .3, 

! 

cov p1, p2( ) = .2( ) .4( ) + .6( ) .2( )[ ] 2 " .4( ) .3( ) = ".02 ⇒ 

! 

H 12 observed( ) = 2 .4( ) .3( ) + 2 ".02( ) = .2, which is less than 

! 

H 12 expected( ) = 2 .4( ) .3( ) = .24  

! 

H 13 observed( ) = 2p 1p 3 + 2cov p1, p3( ) , 

! 

p 3 =1" p 1 " p 2 = .3, 

! 

cov p1, p3( ) = .2( ) .4( ) + .6( ) .2( )[ ] 2 " .4( ) .3( ) = ".02 ⇒ 

! 

H 13 observed( ) = .2  < 

! 

H 13 expected( ) = .24 .  

! 

H 23 observed( ) = 2p 2p 3 + 2cov p2, p3( ) , 

! 

cov p2, p3( ) = .4( ) .4( ) + .2( ) .2( )[ ] 2 " .3( ) .3( ) = .01 ⇒ 

! 

H 23 observed( ) = 2 .3( ) .3( ) + 2 .01( ) = .2  >  

! 

H 23 expected( ) = 2 .3( ) .3( ) = .18. 
Overall observed heterozygosity = .2 + .2 + .2 = .6 < overall expected heterozygosity = 

! 

1" .4( )2 " .3( )2 " .3( )2 = .66. 
 
2.  In general, the ratio of freq(recessive homozygote with inbreeding f) to freq(recessive 
homozygote with inbreeding f = 0) given a recessive allele of frequency q is  

! 

q2 + fpq
q2

=1+ f p
q

.   If f = .005 and q = .005, then p = 1–.005=.995 and the ratio is 

1 + (.005)(.995)/(.005) = 1.995. 
 
Even a relatively small amount of inbreeding can significantly amplify the frequency of a 
rare recessive condition relative to a randomly mating population.  In this case, an 
inbreeding coefficient of just 0.5% would almost double the frequency of the recessive 
disease. 
 
3. The four possible first-cousin pedigrees 
are shown at right.  Note that pedigrees I 
and II contain successive males in all 
lines leading to offspring h and so have 
inbreeding coefficients f = 0.  In pedigree 
III, the only chain that contributes to 
inbreeding is “e-c-b-d-g” since the chain 
through “a” contains successive males.  
The inbreeding coefficient for this case is 
f = 1·(1/2) ·(1/2) ·1·(1/2) = 1/8.  In case 
IV, there are two feasible chains: “e-c-b-
d-g” and “e-c-a-d-g”.  (Note that neither 
contains successive males.)  Inbreeding 
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via the first chain is 1·(1/2) ·(1/2) · ·(1/2)·(1/2) = 1/16 and 1·(1/2) ·1 ·(1/2)·(1/2) = 1/8 via 
the second chain.  Summing these gives f = 3/16. 
 
 
 
 
4. Case 1: 

HI = (.5 + .3)/2 = .4 

! 

H S : 

! 

HS,1 = 2p1q1 = 2(.5)(.5) = .5; 

! 

HS,2 = 2p2q2  = 2(.5)(.5) = .5 ⇒ 

! 

H S  = (.5+.5)/2 = 
.5 
HT:  q1 = q2 = 0.5 ⇒  

! 

q = .5 + .5( ) 2= .5 ⇒ 

! 

HT = 2p q  = 2(.5)(.5) = .5. 

So 

! 

FIS =
H S "HI

H S
 = (.5 – .4)/.5 = .2; 

! 

FST =
HT "H S

HT

 = (.5 – .5)/.5 = 0; 

! 

FIT =
HT "HI

HT

 = (.5 – .4)/.5 = .2. 

  Case 2: 
HI = (.5 + .42)/2 = .46 

! 

H S : 

! 

HS,1 = 2p1q1 = 2(.5)(.5) = .5; 

! 

HS,2 = 2p2q2  = 2(.7)(.3) = .42 ⇒ 

! 

H S  = (.5+.42)/2 
= .46 

HT:  q1 = 0.5, q2 = 0.3 ⇒ 

! 

q = .5 + .3( ) 2  = .4 ⇒ 

! 

HT = 2p q  = 2(.6)(.4) = .48 

So 

! 

FIS =
H S "HI

H S
 = (.46 – .46)/.46 = 0; 

! 

FST =
HT "H S

HT

 = (.48 – .46)/.48 = .0417; 

! 

FIT =
HT "HI

HT

 = (.48 – .46)/.48 = .0417 

 
5.  Subpopulation 1:   

! 

p1 = p2 =! = p5 =1 5 ,   

! 

p6 = p7 =! = p10 = 0 
 Subpopulation 2:   

! 

p1 = p2 =! = p5 = 0,   

! 

p6 = p7 =! = p10 =1 5  
 Averages:   

! 

p 1 = p 2 =! = p 10 =1 10 

! 

HS,1 = HS,2 =1" pi
2

i=1

10

# =1" 5(1 5)2 = 4 5  ⇒ 

! 

H S  = 4/5. 

! 

HT =1" p i
2

i=1

10

# =1"10 1 10( )2 = 9 10  ⇒ GST = (.9 – .8)/.9 = .111 

On the surface, this value of GST is not particularly large despite the two 
subpopulations not sharing even a single allele!  The morale of the exercise is that 
any particular value of FST (GST) has limitations as an indicator of population 
substructuring.  One must also consider the number and distribution of alleles on 
which a given fixation index computation is based. 
 

6.  

! 

Ne diploid( ) =
4N f Nm

N f + Nm

=
4(5)(1)
5 +1

= 3 13   

! 

Ne haplo - diploid( ) =
9N f Nm

2N f + 4Nm

=
9 1( ) 10( )

2 1( ) + 4 10( )
= 2.14  
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7.  Exact: 

! 

Ne =
1
2
1" 1"1 10( ) 1"1 100( ) 1"1 20( ) 1"1 200( )[ ]1 4{ }

"1
 = 11.9;  

Approximate: 

! 

Ne "
4

1 5 +1 50 +1 10 +1 100
=12.1.  The exact and approximate values of 

Ne are obviously very close to one another! 
 

8.  

! 

Ne mtDNA( ) =
Nef

2
=
100
2

= 50 ;  

! 

Ne Y chrom( ) =
Nm

2
=

10
2

= 5 ;  

! 

Ne automsomal( ) =
4Nef Nem

Nef + Nem

=
4 100( ) 10( )
100 +10

= 36.4  


