Homework \#2 Answer Key

1. Lumped heterozygosity $=2 \bar{p} \bar{q}-2 \operatorname{var}(p)$ where $\bar{p}=(.2+.4) / 2=.3, \bar{q}=1-.3=.7$, and $\operatorname{var}(p)=\left(.2^{2}+.4^{2}\right) / 2-(.3)^{2}=.01 \Rightarrow$ lumped heterozygosity $=2(.3)(.7)-2(.01)=.4$. The expected heterogyzosity if one random mating population $=2 \bar{p} \bar{q}=2(.3)(.7)=.42$.
\Rightarrow observed heterozygosity < expected heterozygosity.
$\bar{H}_{i}($ observed $)=2 \bar{p}_{i} \bar{p}_{j}+2 \operatorname{cov}\left(p_{i}, p_{j}\right) \Rightarrow \bar{H}_{12}($ observed $)=2 \bar{p}_{1} \bar{p}_{2}+2 \operatorname{cov}\left(p_{1}, p_{2}\right)$.
$\bar{p}_{1}=(.2+.6) / 2=.4, \bar{p}_{2}=(.4+.2) / 2=.3$,
$\operatorname{cov}\left(p_{1}, p_{2}\right)=[(.2)(.4)+(.6)(.2)] / 2-(.4)(.3)=-.02 \Rightarrow$
$\bar{H}_{12}($ observed $)=2(.4)(.3)+2(-.02)=.2$, which is less than $\bar{H}_{12}($ expected $)=2(.4)(.3)=.24$
$\bar{H}_{13}($ observed $)=2 \bar{p}_{1} \bar{p}_{3}+2 \operatorname{cov}\left(p_{1}, p_{3}\right), \bar{p}_{3}=1-\bar{p}_{1}-\bar{p}_{2}=.3$,
$\operatorname{cov}\left(p_{1}, p_{3}\right)=[(.2)(.4)+(.6)(.2)] / 2-(.4)(.3)=-.02 \Rightarrow \bar{H}_{13}($ observed $)=.2<$
$\bar{H}_{13}($ expected $)=.24 . \bar{H}_{23}($ observed $)=2 \bar{p}_{2} \bar{p}_{3}+2 \operatorname{cov}\left(p_{2}, p_{3}\right)$,
$\operatorname{cov}\left(p_{2}, p_{3}\right)=[(.4)(.4)+(.2)(.2)] / 2-(.3)(.3)=.01 \Rightarrow$
$\bar{H}_{23}($ observed $)=2(.3)(.3)+2(.01)=.2>\bar{H}_{23}($ expected $)=2(.3)(.3)=.18$.
Overall observed heterozygosity $=.2+.2+.2=.6$ < overall expected heterozygosity $=$ $1-(.4)^{2}-(.3)^{2}-(.3)^{2}=.66$.
2. In general, the ratio of freq(recessive homozygote with inbreeding f) to freq(recessive homozygote with inbreeding $\mathrm{f}=0$) given a recessive allele of frequency q is $\frac{q^{2}+f p q}{q^{2}}=1+f \frac{p}{q}$. If $f=.005$ and $q=.005$, then $p=1-.005=.995$ and the ratio is $1+(.005)(.995) /(.005)=1.995$.

Even a relatively small amount of inbreeding can significantly amplify the frequency of a rare recessive condition relative to a randomly mating population. In this case, an inbreeding coefficient of just 0.5% would almost double the frequency of the recessive disease.
3. The four possible first-cousin pedigrees are shown at right. Note that pedigrees I and II contain successive males in all lines leading to offspring h and so have inbreeding coefficients $f=0$. In pedigree III, the only chain that contributes to inbreeding is "e-c-b-d-g" since the chain through "a" contains successive males.
The inbreeding coefficient for this case is $f=1 \cdot(1 / 2) \cdot(1 / 2) \cdot 1 \cdot(1 / 2)=1 / 8$. In case
IV, there are two feasible chains: "e-c-b-$\mathrm{d}-\mathrm{g}$ " and "e-c-a-d-g". (Note that neither contains successive males.) Inbreeding

via the first chain is $1 \cdot(1 / 2) \cdot(1 / 2) \cdot(1 / 2) \cdot(1 / 2)=1 / 16$ and $1 \cdot(1 / 2) \cdot 1 \cdot(1 / 2) \cdot(1 / 2)=1 / 8$ via the second chain. Summing these gives $f=3 / 16$.
4. Case 1:

$$
\begin{aligned}
& H_{I}=(.5+.3) / 2=.4 \\
& \bar{H}_{S}: H_{S, 1}=2 p_{1} q_{1}=2(.5)(.5)=.5 ; H_{S, 2}=2 p_{2} q_{2}=2(.5)(.5)=.5 \Rightarrow \bar{H}_{S}=(.5+.5) / 2= \\
& .5 \\
& H_{T}: q_{1}=q_{2}=0.5 \Rightarrow \bar{q}=(.5+.5) / 2=.5 \Rightarrow H_{T}=2 \bar{p} \bar{q}=2(.5)(.5)=.5 . \\
& \text { So } F_{I S}=\frac{\bar{H}_{S}-H_{I}}{\bar{H}_{S}}=(.5-.4) / .5=.2 ; F_{S T}=\frac{H_{T}-\bar{H}_{S}}{H_{T}}=(.5-.5) / .5=0 ; \\
& F_{I T}=\frac{H_{T}-H_{I}}{H_{T}}=(.5-.4) / .5=.2 .
\end{aligned}
$$

Case 2:

$$
\begin{aligned}
& H_{I}=(.5+.42) / 2=.46 \\
& \bar{H}_{S}: H_{S, 1}=2 p_{1} q_{1}=2(.5)(.5)=.5 ; H_{S, 2}=2 p_{2} q_{2}=2(.7)(.3)=.42 \Rightarrow \bar{H}_{S}=(.5+.42) / 2 \\
& \quad=.46 \\
& H_{T}: q_{1}=0.5, q_{2}=0.3 \Rightarrow \bar{q}=(.5+.3) / 2=.4 \Rightarrow H_{T}=2 \bar{p} \bar{q}=2(.6)(.4)=.48 \\
& \text { So } F_{I S}=\frac{\bar{H}_{S}-H_{I}}{\bar{H}_{S}}=(.46-.46) / .46=0 ; F_{S T}=\frac{H_{T}-\bar{H}_{S}}{H_{T}}=(.48-.46) / .48=.0417 ; \\
& F_{I T}=\frac{H_{T}-H_{I}}{H_{T}}=(.48-.46) / .48=.0417
\end{aligned}
$$

5. Subpopulation 1: $p_{1}=p_{2}=\cdots=p_{5}=1 / 5, p_{6}=p_{7}=\cdots=p_{10}=0$

Subpopulation 2: $p_{1}=p_{2}=\cdots=p_{5}=0, p_{6}=p_{7}=\cdots=p_{10}=1 / 5$
Averages: $\bar{p}_{1}=\bar{p}_{2}=\cdots=\bar{p}_{10}=1 / 10$
$H_{S, 1}=H_{S, 2}=1-\sum_{i=1}^{10} p_{i}^{2}=1-5(1 / 5)^{2}=4 / 5 \Rightarrow \bar{H}_{S}=4 / 5$.
$H_{T}=1-\sum_{i=1}^{10} \bar{p}_{i}^{2}=1-10(1 / 10)^{2}=9 / 10 \Rightarrow G_{S T}=(.9-.8) / .9=.111$
On the surface, this value of G_{ST} is not particularly large despite the two subpopulations not sharing even a single allele! The morale of the exercise is that any particular value of $\mathrm{F}_{\mathrm{ST}}\left(\mathrm{G}_{\mathrm{ST}}\right)$ has limitations as an indicator of population substructuring. One must also consider the number and distribution of alleles on which a given fixation index computation is based.
6. $\quad N_{e}($ diploid $)=\frac{4 N_{f} N_{m}}{N_{f}+N_{m}}=\frac{4(5)(1)}{5+1}=3 \frac{1}{3}$
$N_{e}($ haplo - diploid $)=\frac{9 N_{f} N_{m}}{2 N_{f}+4 N_{m}}=\frac{9(1)(10)}{2(1)+4(10)}=2.14$
7. Exact: $N_{e}=\frac{1}{2}\left\{1-[(1-1 / 10)(1-1 / 100)(1-1 / 20)(1-1 / 200)]^{1 / 4}\right\}^{-1}=11.9$;

Approximate: $N_{e} \approx \frac{4}{1 / 5+1 / 50+1 / 10+1 / 100}=12.1$. The exact and approximate values of N_{e} are obviously very close to one another!
8. $\quad N_{e}(\operatorname{mtDNA})=\frac{N_{e f}}{2}=\frac{100}{2}=50$;
$N_{e}(\mathrm{Y}$ chrom $)=\frac{N_{m}}{2}=\frac{10}{2}=5$;
$N_{e}($ automsomal $)=\frac{4 N_{e f} N_{e m}}{N_{e f}+N_{e m}}=\frac{4(100)(10)}{100+10}=36.4$

