SELECTION & THE SINGLE DIALLELIC DIPLOID LOCUS. 1

• General equations

- Diploid selection to asexual/haploid selection except that parental <u>genotypes</u> not passed on, although their <u>alleles</u> are.
- Will repeatedly use the following facts from our H-W discussion :
 - (1) Offspring <u>allele</u> frequencies = those of their randomly mating parents
 - (2) Offspring <u>genotype</u> frequencies are in H-W proportions, even if their parents' were not.
- **Relative fitnesses** of diploid genotypes: w_{AA} , w_{Aa} , w_{aa}
- frequency of A allele = p; frequency of allele a = q = 1 p. • assume zygotes are in H-W proportions.

- Life Cycle:
$$zygotes \xrightarrow{survival} adults \xrightarrow{fecundity} gametes \xrightarrow{random union} zygotes \underset{gen. t+1(')}{} zygotes$$

- Assume all have same fecundity so relative fitness = viability
- <u>Genotype frequencies</u> after selection (but before reproduction)

•
$$P_{AA}^* = \frac{\text{number of AA parents surviving}}{\text{total number of surviving parents}} = \frac{Np^2 w_{AA}}{Np^2 w_{AA} + N2pq w_{Aa} + Nq^2 w_{aa}} = p^2 \frac{w_{AA}}{\overline{w}}$$

where $\overline{w} = p^2 w_{AA} + 2 p q w_{Aa} + q^2 w_{aa}$ is the population **mean fitness**.

• Similarly,
$$P_{Aa}^* = 2 p q \frac{w_{Aa}}{\overline{w}}$$
, $P_{aa}^* = q^2 \frac{w_{aa}}{\overline{w}}$

- <u>Allele frequencies</u> after selection and reproduction
 - If surviving parents mate randomly, then

$$p' = p^* = P_{AA}^* + \not \!\!\! 2 P_{Aa}^* = p^2 \frac{w_{AA}}{\overline{w}} + pq \frac{w_{Aa}}{\overline{w}} = p \frac{\left(pw_{AA} + qw_{Aa}\right)}{\overline{w}}$$

• Quantity in parentheses is **mean fitness of individuals who carry** *A*: $\overline{w}_A \equiv pw_{AA} + qw_{Aa}$ • Can then rewrite above as, $p' = p \frac{\overline{W}_A}{\overline{W}}$.

• Similarly, $q' = q \frac{\overline{w_a}}{\overline{w}}$ where $\overline{w_a} = p w_{Aa} + q w_{aa}$ is the mean fitness of individuals who carry *a*.

- <u>Handy Fact</u>: $\overline{w} = p\overline{w}_A + q\overline{w}_a$ (compare with *asexual* mean fitness)

- Rate of allele frequency change $(\Delta p = p' - p)$: $\Delta p = pq \frac{\overline{w}_A - \overline{w}_a}{\overline{w}}$

- <u>Summarize</u>:

- Equations for evolution by selection in diploids identical (in form) to asexuals/haploids.
- Allele frequency change (evolution) depends on **genetic variation** and **fitness differences**

• Spread of an advantageous allele

- Designate A to be the advantageous allele.
- Adopt the following notation:

Genotype	AA	Aa	aa
Fitness	$w_{AA} = 1$	$w_{Aa} = 1 - hs$	$w_{aa} = 1 - s$

- *h* measures allelic **dominance** of *A* over *a*:

- $h = 1 \iff 1:1-s:1-s$ (A is <u>recessive</u> advantageous)
- $h = 0 \iff 1:1:1-s$ (A is <u>dominant</u> advantageous)
- $h = 1/2 \iff 1:1 s/2:1 s$ (semi-dominant, additive, no dominance)
- $h \neq 0, 1, \frac{1}{2}$ (partially dominant)

– Equations in this parameterization for allele frequency evolution:

$$\Delta p = pq \frac{s[q + h(p - q)]}{1 - sq(q + 2ph)}$$

- Application (from Y.J. Chung. Genetics. 1967)
 - Selection against allele that produces stubble bristles in Drosophila

Genotype	+/+	+/sb	sb/sb
Phenotype	normal	stubble	lethal in
(Fitness)			larval stages
			(s = 1)

- Two Special Cases:

(1) <u>Dominant</u> advantageous allele $(h = 0, \frac{w_{AA}}{1}: \frac{w_{Aa}}{1}: \frac{w_{aa}}{1-s})$

$$\Delta p = p(1-p) \frac{s(1-p)}{1-s(1-p)^2}$$

- Dynamics: spread of allele is rapid at first; later, slows as A spreads.
- Why these dynamics?
 - Biological Intuition
 - Mathematical Explanation

(2) <u>Recessive</u> advantageous allele $(h = 1, \frac{w_{AA}}{1}: \frac{w_{Aa}}{1-s}: \frac{w_{aa}}{1-s})$

$$\Delta p = p(1-p)\frac{sp}{1-s(1-p^2)}$$

- Dynamics: spread of allele A is slow at first; rapid later as A spreads.
- Why these dynamics?
 - Biological Intuition
 - Mathematical Explanation
- Rates of evolution: Dominant vs. Recessive Alleles
 - Basic Principles:
 - rare alleles occur primarily in heterozygotes

- intuition for the magnitude of change when an allele is rare: compare heterozygous fitness to that of the common homozygote.
- Main Features:
 - Extensive time needed for spread of advantageous recessive (extensive time needed for elimination of deleterious recessive)
 - Rapid evolution from 0.1 to 0.9 in all cases
 - Multiplicative selection: produces even faster evolution (homework)
- For weak selection ($s \ll 1$), time required for a specified allele frequency change is inversely proportional to s, i.e., $t \propto 1/s$ when $s \ll 1$.