SELECTION AND DRIFT

- If mutation is absent, genetic drift leads to fixation—with or without selection.
- Q: How does selection affect the probability that an allele that occurs in a population of size N will become fixed or lost?
- A: Consider the Wright-Fisher model with selection:
 - Life Cycle:

Adults
$$(N) \xrightarrow{\text{meiosis}} \text{Gametes} (\infty) \xrightarrow{\text{R.U.G}} \text{Zygotes} (\infty)$$

$$\xrightarrow{\text{viability selection}}$$
 Teens $\xrightarrow{\text{density regulation}}$ Adults (N)

- Must resort to Markov Chain methods. Note that, for 2 alleles (and, hence, 3 diploid genotypes), $P(j \mid i)$ is derived from trinomial sampling of *genotypes* of the selection survivors.
 - Except for very small populations, Markov Chains are difficult to handle.
 - Population geneticists have resorted to "diffusion approximations" to estimate fixation probabilities and times, and more.

- Let U(p) = probability of fixation of an allele with initial frequency p.

• Some results for multiplicative fitnesses: $w_{AA} = (1 + s)^2$, $w_{Aa} = 1 + s$, $w_{aa} = 1$.

(1)
$$U(p) \approx \frac{1 - e^{-4N_{sp}}}{1 - e^{-4N_s}}$$
.

- (2) Fixation probability for a newly arisen mutant.
 - Newly arisen mutant has initial frequency p = 1/2N- Probability of fixation = $U\left(\frac{1}{2N}\right) \approx \frac{1 - e^{-2s}}{1 - e^{-4Ns}}$

- If
$$s \le 0$$
 and $|s| <<1$ (i.e., A slightly deleterious or neutral), $U\left(\frac{1}{2N}\right) \approx \frac{1}{2N}$
- If $0 < s <<1$ (i.e. A slightly advantageous, $U\left(\frac{1}{2N}\right) \approx 2s$

- Note: This leads to an expression for a "non-neutral" rate of substitution:
 - = (new mutations with advantage s) × (probability of fixation)
 - \approx (2Nu) × (2s) = 4Nus

- <u>Conclude</u>: Even if population size is very large (or ∞ !), a new mutant stands a good chance of being lost due to drift, whether it is selectively favored or not.

SELECTION, MUTATION, AND DRIFT

- Assume two-way mutation (so fixation is not terminal).
- -Q: What is the distribution of allele frequencies at equilibrium under selection-mutationdrift balance?
- A: Define $\hat{\phi}(p)dp$ = fraction of populations with allele frequencies between p and p + dp at equilibrium.
 - Note, $\hat{\phi}(p)$ is a *continuous distribution*.
- Turns out that $\hat{\phi}(p) = K p^{4N\nu-1} (1-p)^{4Nu-1} [\overline{w}(p)]^{2N}$
 - where, u, v = forward and backward mutation rates K = constant $\overline{w}(p) =$ mean fitness in a population with allele frequency p.
 - Note that $[\overline{w}(p)]^{2N}$ term accentuates peaks and valleys if $\overline{w}(p) \neq 1$. - selection dominates as N gets larger.

- Conclusions

- (1) $\hat{\phi}(p)$ concentrated at equilibria predicted by deterministic models when selection is very strong relative to mutation, drift (i.e., s >> 4u, s >> 2N)
 - i.e., $\hat{\phi}(p)$ will track peaks in \overline{w} .
- (2) As the strength of mutation increases relative to selection, $\hat{\phi}(p)$ concentrates increasingly around equilibrium frequency of a deterministic mutation model.
- (3) As drift gets stronger, (*N* smaller) relative to selection, mutation, $\hat{\phi}(p)$ "spreads out" around deterministic predictions.
 - greater tendency for populations to become fixed.

(4) As *N* decreases with s = u = v, mutation becomes more important than selection since mutational effects are relatively stronger than selection when there is little variance.