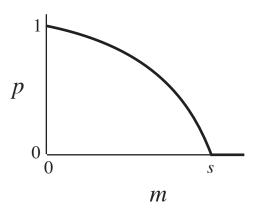
MIGRATION & SELECTION

• One-island model with selection

- -A favored on island.
- -a fixed on continent: $p_c = 0$.
- -A is dominant.
 - Fitnesses on island:

Genotype	AA	Aa	aa
Fitness	1	1	1-s

- Life Cycle: $zygotes \xrightarrow{selection} adults \xrightarrow{migration} gametes \xrightarrow{random union} zygotes$ $p \qquad p^{**} \qquad p'$
- After selection (before migration): $p^* = p \frac{1}{1 q^2 s}$
- After migration & reproduction: $p' = (1 m)p^* + m(0) = \frac{p(1 m)}{1 q^2 s}$
- To find any equilibria, set p' = p.
 - Solving for *p* gives $\hat{p} = 1 \sqrt{m/s}$
 - Require $0 \le \hat{p} \le 1$.
 - This occurs only when m < s.
 - Otherwise $\hat{p} = 0$.

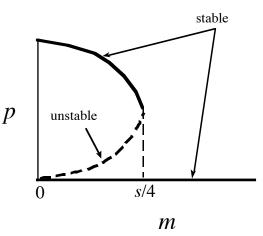


- Now assume *A* is recessive.
 - Fitnesses on island:

Genotype	AA	Aa	aa
Fitness	1	1-s	1 – <i>s</i>

- After selection (before migration): $p^* = \frac{p(1-qs)}{1-sq(1+p)}$
- After migration & reproduction: $p' = (1 m)p^* + m(0) = \frac{p(1 m)(1 qs)}{1 sq(1 + p)}$
- To find equilibria, set p' = p and solve for p.

- Get cubic equation for \hat{p} 's (up to 3 possible solutions).
- $-\hat{p} = 0$ is always an equilibrium (since $p_c = 0$).
- There are two polymorphic
 equilibria when s > 4m (assuming m is small).
 - one equilibrium is stable, the other is unstable.



Implications

- If recessive selection is strong enough to maintain A in the face of migration, A will spread only if it's initially sufficiently frequent enough. Otherwise, it will be lost.
- In general, unless locally advantageous allele is completely dominant, it must reach a threshold frequency to persist.
- If an allele persists, it won't be found at a low frequency.
- Historical "accidents" play a role.
 - Identical patches will evolve differently if they differ in initial allele frequency.

• The Levene Model

- **Q:** What happens when a population is made up of a group of distinct subpopulation patches, with different selection pressures occurring in each and migration between locations?
- **A:** Depends on geography (population structure).
- Natural populations fall somewhere between the following two extremes:
 - <u>Unrestricted</u> migration.
 - Restricted migration.

"Coarse" Notes Population Genetics

- A simple model of <u>unrestricted</u> migration was presented in 1953 by H. Levene.
- Assumptions of Levene's 1953 model:
 - *n* patches in which different patterns of selection occur.
 - Frequency of *A* among gametes is *p*.
 - After fertilization, (diploid) zygotes colonize the different patches (at random).
 - Important: this implies that the zygotes within patches are in H-W proportions.
 - *i*th patch makes up a fraction c_i of the environment.
 - Fitnesses in the *i*th patch:

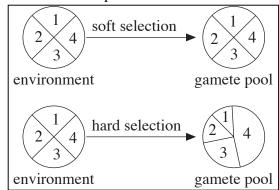
Genotype	AA	Aa	aa
Fitness	$w_{AA}(i)$	$w_{Aa}(i)$	$w_{aa}(i)$

- Random mating between patches.
 - Individuals from different localities form a single mating (gamete) pool.
- Why study the Levene model?
 - Captures essential features of spatially subdivided population <u>and</u> is mathematcially tractable.
 - Is a reasonable representation of certain natural systems as well.
- Back to model...How many gametes does each patch contribute to the gamete pool?
 - Two extremes:
 - (1) *Hard selection* (due to Dempster, 1955)
 - Patch contributes gametes in proportion to the fraction of survivors.
 i.e., patches with higher fitness contribute disproportionately more.
 - Implies population size is not regulated within patches.

(2) Soft selection

- Each patch contributes fixed number of gametes to the mating pool *regardless* of local fitnesses.
- Number of reproducing adults from each patch is the same from one generation to the next.

- Implies population size is regulated within each patch.
- A schematic comparison between soft and hard selection, assuming $c_1 = c_2 = c_3 = c_4$ and $\overline{w}_4 > \overline{w}_3 > \overline{w}_2 > \overline{w}_1$



- Levene model with <u>hard selection</u> ("constant number of zygotes"):
 - Assumes contribution of genotype from patch i to the gamete pool is proportional to it's fitness in that patch $[w_{\text{genotype}}(i)] \times$ frequency of i patch in environment (c_i) :
 - i.e., total number of survivors of that genotype in patch $i \propto c_i w_{\text{genotype}}(i)$
 - Overall fitness of genotype in population is its average fitness over patches:
 - For example, mean fitness of AA: $\overline{w}_{AA} = \sum_{i=1}^{n} c_i w_{AA}(i)$
 - Likewise for Aa and aa.
 - Consider changes in the frequency p of A in the gamete pool.

•
$$p' = p \frac{p \overline{w}_{AA} + q \overline{w}_{Aa}}{\overline{\overline{w}}} = p \frac{\overline{\overline{w}}_{A}}{\overline{\overline{w}}}$$
 where $\overline{\overline{w}}_{A} = p \overline{w}_{AA} + q \overline{w}_{Aa}$ and $\overline{\overline{w}} = p^{2} \overline{w}_{AA} + 2pq \overline{w}_{Aa} + q^{2} \overline{w}_{aa}$.

- Looks just like selection with constant fitnesses: $\overline{w}_{AA}, \overline{w}_{Aa}, \overline{w}_{aa}$
- Consequences
 - An allele will spread if it has the highest arithmetic mean fitness across patches.
 - Selection will maintain a stable polymorphism if heterozygotes have the greatest arithmetic mean fitness across patches.
 - For example, consider two equally sized patches, $c_1 = c_2 = 0.5$.

Fitness in patch:	AA	Aa	aa
# 1	0	0.75	1
# 2	1	0.75	0
Average:	0.5	0.75	0.5

• Selection maximizes arithmetic mean fitness across environments

- Levene model with <u>soft selection</u> ("constant number of adults"):
 - Within each patch, selection operates as usual.

- Fitness in patch *i*:
$$AA$$
 Aa aa w_i 1 v_i

– After selection, frequency of A in patch i is

$$p^*(i) = p \frac{pw_i + q(1)}{p^2w_i + 2pq(1) + q^2v_i} = p \frac{\overline{w}_A(i)}{\overline{w}(i)}$$

- Density regulation occurs independently in each patch.
- Survivors contribute to gamete pool in proportion to the size (= relative proportion of adults) of the patch, c_i :

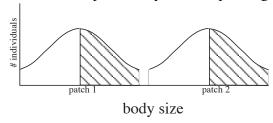
$$p' = \sum_{i=1}^{n} c_i p^*(i) = \sum_{i=1}^{n} c_i p \frac{p w_i + q}{p^2 w_i + 2 p q + q^2 v_i}$$

- Equilibrium: set p' = p and solve for p.
 - Results in polynomial of degree 2n + 1 in p. \Rightarrow as many as 2n + 1 equilibria, \hat{p} , are possible!
 - Mathematically too difficult to find all these.
- Alternative: protected polymorphism analysis:

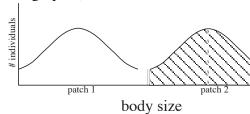
• Near
$$p = 0$$
, $p' \approx \sum_{i=1}^{n} \left(\frac{c_i}{v_i}\right) p = p \frac{1}{\tilde{v}}$
where $\tilde{v} = 1 / \left[\sum_{i=1}^{n} c_i \left(\frac{1}{v_i}\right)\right]$ is the harmonic mean fitness of aa homozygotes.

- Note that p' > p (i.e., $\Delta p > 0$) whenever $1/\tilde{v} > 1 \Leftrightarrow \tilde{v} < 1$ — i.e., whenever the "harmonic mean fitness of aa homozygotes" < "mean fitness of heterozygotes"
- Likewise, near p = 1, (q = 0), q' > q whenever $\tilde{w} < 1$.
- <u>Conclude</u>: protected polymorphism occurs with soft selection whenever there is harmonic mean overdominance in fitness across patches: $\tilde{w} < 1 > \tilde{v}$.
- Bottom line(s) for soft selection

- Harmonic mean fitness across patches is the relevant fitness measure if $p \approx 0$ or 1.
- Turns out, however, that selection maximizes *geometric* mean fitness.
- Hard versus Soft Selection
 - Conditions exist in which an allele will increase under soft selection but not hard selection.
 - I.e., polymorphisms can be maintained under a broader range of conditions with soft selection versus hard selection.
 - Intuitively follows because under soft selection, individuals compete selectively only against "patch-mates".
 - With hard selection, all compete.
 - Mathematically follows because harmonic mean is never larger than the arithmetic mean: $\tilde{v} \le \overline{v} = \sum_{i=1}^{n} c_i v_i$.
 - Q: Why does soft selection seem "hard" (density regulation; intense local competition) while hard selection seems "soft" (little competition; no density regulation)?
 - A: It all depends on your viewpoint (genetic vs. demographic).



 Soft selection: top 50% in each patch selected.



 Hard selection: top 50% selected (regardless of patch).