“Coarse” Notes Population Genetics

PRICE’S THEOREM & POPULATION GENETICS
DERIVATION OF THE PRICE EQUATION

* Price’s Theorem is a universal law of evolution
— describes how the mean of any trait changes from ancestor to descendent
* ancestor & descendent can be broadly defined

* PT has been used primarily to address kin and group selection, but in recent times is being
applied more widely, including in community ecology

* Consider N individuals with trait values (phenotypes) z, z,, ..., Zy-
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¢ Individual i has W; offspring. It’s jth offspring has phenotype z, +9;
—i.e., 0, is the difference between the phenotypes the jth offpsring and its parent
W;
— average difference between individual i and all its offpsring is 51 = —E(‘SU
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* The average phenotype of all the offspring of all individuals is
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— Does not require W = 1, so population size can change.
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* This shows |AZ = W[COV(W 2)+E (W(S) , which is known as the Price’s Theorem

—named after it’s discoverer George R. Price
— covariance term describes selection
— 2" term summarizes ancestor-descendent differences (for any reasons)

PRICE’S THEOREM APPLIED TO POPULATION GENETICS: MUTATION-SELECTION BALANCE

* Haploid locus with alleles A and a (fregs. p and g) with one-way mutation from A to a at rate u;
fitnesses w, =1 and w, = 1—s
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e Let z = fraction of A alleles (“Indicator Variable™)
—if genotype A, then z = 1 and z = 0 if genotype a

e Z=p 14+q 0=p so AZ = Ap in this case
* Computing components of the Price Equation:
W=pl+gq (1—s)=1—qs

cov(W,z) = E(Wz) - Wz
=[p- I-1+¢ (1—s)' O]—W_/p=p—pW=p(1—V[_/)=p(1—l+qs)
= Pqs

E(Ws):
— Let z, be the average z among offspring of individual w/ genotype g; then Sg =7, -Z
—Z0=(0-u)l+uw0=(1-u)=06,=7-2,=(1-u)-1=-u
~7°=0=0,=7'-7,=0-0=0
- E(Wg) =p1:8,+q (1-5)5, =—pu

* Putting everything together:

_ 1
Ac=ap= l_qs(pqs—pu)— 1-gs

(g5 - )

* Mutation-selection balance when Ap =0

— From Price’s Theorem, can see immediately that this holds when ¢ =g =

v =

THE BREEDER’S EQUATION (based on Rice)

* Price’s Theorem can be re-written to emphasize the relation between parents and offspring as
follows:

—define 7/ =z, + 51 (the mean phenotype of i's offspring )

—then AZ = %[COV(W 20 = 5) + E(Wé_)] = %[COV(W,ZU) —cov(W ,5) + E(Wé_)]

—So,|A7 =

COV(W ,Z”) +5 , (M
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= 1 _
where 6 = E (6) = ﬁEiléi is the “transmission bias”, i.e., the change that would occur
at the population level by reproduction alone.

o Assume & =0 and that the mean offspring phenotype is a linear function of the parental
phenotype: 7 =7 + bi,,’z(zi - Z)

1
—then A7 =b., —cov(W,
- cov(W 2)
1
— The selection differential S is defined as S = :COV(W ,z) , thus we have the breeder’s

— As Rice points out, this result applies to both asexual and sexual organisms.

— In the case of sexual organisms, z;, should be interpreted as the mid-parent phenotype and
the regression coeffient is equivalent to the heritability 4”.

*Since b, = COV(Z ”,z) / var(z) and the selection gradient is, by definition, 8= S/var(z), then
we also have Lande’s Equation |AZ = COV(Z ”,Z) B

— p defines directional selection on the trait.

— This version of Lande’s equation applies to both asexual and sexual organisms!
— In sexual organisms, COV(Z ”,z) =V, , the additive-genetic covariance. However, as Rice

points out, there are situations in which COV(Z ”,z) =V, and in those cases, the parent-
offspring covariance determines the evolutionary response to selection.

FISHER’S FUNDAMENTAL THEOREM OF NATURAL SELECTION

* Since individual fitness, W, is a quantifiable phenotype, Price’s Theorem applies to the change
in the mean fitness of a population.

B cov(W,V\_/")
* Applying version (*) of Price’s Theorem: AW=—F>——"+

S

w
* Since cov(W,VT/") =V, , the additive-genetic variance for fitness, this immediately gives a

version of Fisher’s Fundamental Theorem of Natural Selection:

AW =245 .

§I |>.<
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e If there is no transmission bias (3 =0), then AW = v,/ W , like the equation we saw earlier.

* The version of FFTNS with transmission bias (3 # 0) emphasizes the role of non-heritable
causes of fitness changes (e.g., density or frequency dependence, environmental variation,
phenotypic plasticity, learning, etc.)

EVOLUTION OF THE VARIANCE (& OTHER HIGHER MOMENTS)

eIfk=2,¢= E(z—?)2 = var(z) which gives |A var(z) = %{COV[W,(Z - Z)Z] + E[Wg(z_z)z]}.

* Similar equations can be developed for the skew, kurtosis, and so forth.

¢ Consider the regression of fitness on (z—f)2 P o o cov(W,(z—z)z)
w,z-z

_If B

) < 0, selection is stabilizing since a phenotype’s fitness decreases with its
W z-z

2

distance from the mean.

- If > 0, selection is disruptive since a phenotype’s fitness increases with its distance
wfoca] P p yp

from the mean.



