Evolutionary quantitative genetics and one-locus population genetics

READING: Nielsen \& Slatkin pp. 215-230

- Most "interesting" evolutionary problems involve questions about phenotypic means
- Goal: determine how selection causes evolutionary change in the mean of a quantitative character.
- Aside: Quantitative vs. Qualitative Traits
- Back to our main story.... selection on a trait such as body size
- body size of individual is denoted z
- mean body size in a population: \bar{Z}
- Suppose selection alters allele frequencies at loci that affect z
- Consider the effect on body size of one specific locus, i
- In general, to determine how much \bar{z} changes, one needs to determine:

1) how selection changes $p^{(i)}$ at all loci affecting \bar{z}
2) how changes in $p^{(i)}$ combine to change \bar{z}.

- We'll focus on the effects of one of the loci that affects \bar{z}
- The phenotype of an individual depends on:

1) its genotype at locus i
2) its genotype at other loci that affect the trait
3) its environmental experience

- lump 2 \& 3 into a single factor, c
- Can think of an individual's phenotype as $z=a_{j k}+c$

- The average phenotype can similarly be broken down into the average contribution of locus i and the average over other loci and environmental effects: $\bar{z}=\bar{a}+\bar{c}$
- Consider the effect of a change in $p^{(i)}$ on \bar{z} (holding all other loci constant):

$$
\Delta \bar{z}^{(i)}=\bar{z}\left(p^{(i)}+\Delta p^{(i)}\right)-\bar{z}\left(p^{(i)}\right) \approx \frac{d \bar{z}}{d p} \Delta p^{(i)}
$$

(drop i)

$$
=\frac{d \bar{z}}{d p}\left[\frac{1}{2} p(1-p) \frac{d \ln \bar{w}}{d p}\right]
$$

(term in brackets is just our old friend the adaptive topography)
(using the chain rule) $=\frac{d \bar{z}}{d p}\left[\frac{1}{2} p(1-p) \frac{d \ln \bar{w}}{d \bar{z}} \frac{d \bar{z}}{d p}\right]$

- Summarizing: $\Delta \bar{Z}^{(i)} \approx \frac{1}{2}\left(\frac{d \bar{z}}{d p}\right)^{2} p(1-p) \frac{d \ln \bar{w}}{d \bar{z}}$
(This form emphasizes how mean fitness depends on mean phenotype)
- What is $\frac{d \bar{z}}{d p}$?

$$
\begin{aligned}
\frac{d \bar{z}}{d p}=\frac{d}{d p}(\bar{a}+ & \bar{c})=\frac{d}{d p}\left(p^{2} a_{11}+2 p q a_{12}+q^{2} a_{22}+\bar{c}\right) \\
& =2 p a_{11}+2 q a_{12}-2 p a_{12}+2 q a_{22}+0 \\
& =2\left(p a_{11}+q a_{12}-p a_{12}+q a_{22}\right)
\end{aligned}
$$

Putting these pieces together:

$$
\Delta \bar{Z}^{(i)}=\frac{1}{2} \times p q \times 4\left(p a_{11}+q a_{12}-p a_{12}+q a_{22}\right)^{2}
$$

or

$$
\Delta \bar{Z}^{(i)}=G^{(i)} \beta
$$

where

$$
G^{(i)}=2 p q\left[\left(p a_{11}+q a_{12}\right)-\left(p a_{12}+q a_{22}\right)\right]^{2}
$$

and

$$
\beta=\frac{d \ln \bar{w}}{d \bar{z}}
$$

- What is β ?
- called the selection gradient
- measures the strength of "directional" selection acting on a trait z
- What is $G^{(i)}$?
- It is a centrally important quantity called the additive genetic variance contributed by locus i
- Why "additive"?
- Dominance Variance
- Consider total variation in z due to variation at locus i :

$$
\begin{aligned}
& \operatorname{var}\left(\mathrm{z}^{(i)}\right)=\operatorname{var}\left(a_{j k}+\mathrm{c}\right)=\operatorname{var}\left(a_{j i}\right) \text { since assume } c \text { is fixed. } \\
& \text { So, } \operatorname{var}\left(\mathrm{z}^{(i)}\right)=\operatorname{var}\left(a_{j i}\right)=E\left(a_{j k}^{2}\right)-\left[E\left(a_{j k}\right)\right]^{2} \\
& \text { (assuming HW equilibrium) } \\
& =\left(p^{2} a_{11}^{2}+2 p q a_{12}^{2}+q^{2} a_{22}^{2}\right)-\left(p^{2} a_{11}+2 p q a_{12}+q^{2} a_{22}\right)^{2}= \\
& \text { (after a lot of tedious algebra) } \\
& =G^{(i)}+\left\{2 p q\left[a_{12}-\frac{a_{11}+a_{22}}{2}\right]\right\}^{2} \\
& =G^{(i)}+D^{(i)}
\end{aligned}
$$

where $\left\{D^{(i)}=2 p q\left[a_{12}-\frac{a_{11}+a_{22}}{2}\right]\right\}^{2}$

- $D^{(i)}$ is called the dominance variance contributed by locus i
- Why "dominance"?
- Relationship between additive and dominance Variance
- Case 1: no dominance
- Case 2: symmetric over-dominance
- What about other loci that contribute to variation in the trait?
- Generally difficult (recall complications of 2-locus population genetics) to understand
- Assuming linkage equilibrium among all loci contributing to variation in the trait:

$$
\Delta \bar{Z}=\Delta \bar{Z}^{(1)}+\Delta \bar{Z}^{(2)}+\cdots+\Delta \bar{Z}^{(k)}=\left[G^{(1)}+G^{(2)}+\cdots+G^{(k)}\right] \beta=\left[\sum_{i=1}^{k} G^{(i)}\right] \beta
$$

If we define $G=\sum_{i=1}^{k} G^{(i)}$, then
$\Delta \bar{z}=G \beta$

- This is a version of the breeder's equation, which is the central equation of quantitative genetics
- Note its similarity to the equation of selection at one locus
- A more traditional form of the breeder's equation is $R=h^{2} S$
- $R=\Delta \bar{z}$ is the "response to selection"
- S = the "selection differential" = difference between the means of the breeders and the population
- h^{2} is the "heritability" $=G / P$ where P is the total ("phenotypic") variability in z due to all genetic and environmental causes
- This implies that $S=P \beta$
- $P=G+D+E$ where $D=\sum_{i=1}^{k} D^{(i)}$ to the total "dominance variance" and E is the variation due to "environmental" effects (including genetic interactions besides dominance, such as epistatis)
- Important: only G determines the response to selection since additive effects are the only "predictable" components of genetic variation.
- Note that additive, dominance variances change as allele frequencies change.

