Evolutionary quantitative genetics and one-locus population genetics

READING: Nielsen & Slatkin pp. 215-230

- Most "interesting" evolutionary problems involve questions about phenotypic means
- <u>Goal</u>: determine how selection causes *evolutionary* change in the mean of a quantitative character.
- <u>Aside</u>: Quantitative vs. Qualitative Traits
- Back to our main story.... selection on a trait such as body size
 - body size of individual is denoted z
 - mean body size in a population: \bar{z}
 - Suppose selection alters allele frequencies at loci that affect z
 - Consider the effect on body size of one specific locus, i
 - In general, to determine how much \overline{z} changes, one needs to determine:
 - 1) how selection changes $p^{(i)}$ at all loci affecting $ar{z}$
 - 2) how changes in $p^{(i)}$ combine to change \overline{z} .

- We'll focus on the effects of one of the loci that affects \overline{z}
 - The phenotype of an individual depends on:
 - 1) its genotype at locus *i*
 - 2) its genotype at other loci that affect the trait
 - 3) its environmental experience

- lump 2 & 3 into a single factor, c

• Can think of an individual's phenotype as $z = a_{ik} + c$

- The *average* phenotype can similarly be broken down into the average contribution of locus *i* and the average over other loci and environmental effects: $\bar{z} = \bar{a} + \bar{c}$
- Consider the effect of a change in $p^{(i)}$ on \bar{z} (holding all other loci constant):

$$\Delta \bar{z}^{(i)} = \bar{z} \left(p^{(i)} + \Delta p^{(i)} \right) - \bar{z} \left(p^{(i)} \right) \approx \frac{d\bar{z}}{dp} \Delta p^{(i)}$$

(drop i)

 $= \frac{d\bar{z}}{dp} \left[\frac{1}{2} p(1-p) \frac{d\ln\bar{w}}{dp} \right]$

(term in brackets is just our old friend the adaptive topography)

(using the chain rule) = $\frac{d\bar{z}}{dp} \left[\frac{1}{2} p(1-p) \frac{d\ln\bar{w}}{d\bar{z}} \frac{d\bar{z}}{dp} \right]$

- Summarizing: $\Delta \bar{z}^{(i)} \approx \frac{1}{2} \left(\frac{d\bar{z}}{dp}\right)^2 p(1-p) \frac{d \ln \bar{w}}{d\bar{z}}$ (This form emphasizes how mean fitness depends on mean phenotype)

• What is $\frac{d\bar{z}}{dp}$? $\frac{d\bar{z}}{dp} = \frac{d}{dp}(\bar{a} + \bar{c}) = \frac{d}{dp}(p^2a_{11} + 2pqa_{12} + q^2a_{22} + \bar{c})$ $= 2pa_{11} + 2qa_{12} - 2pa_{12} + 2qa_{22} + 0$ $= 2(pa_{11} + qa_{12} - pa_{12} + qa_{22})$

Putting these pieces together:

$$\Delta \bar{z}^{(i)} = \frac{1}{2} \times pq \times 4(pa_{11} + qa_{12} - pa_{12} + qa_{22})^2$$

or

$$\Delta \bar{z}^{(i)} = G^{(i)}\beta$$

where

$$G^{(i)} = 2pq[(pa_{11} + qa_{12}) - (pa_{12} + qa_{22})]^2$$

and

$$\beta = \frac{d \ln \overline{w}}{d\overline{z}}$$

• What is β ?

- called the selection gradient

- measures the strength of "directional" selection acting on a trait z
- What is $G^{(i)}$?
 - It is a centrally important quantity called the **additive genetic variance** contributed by locus *i*
 - Why "additive"?
- Dominance Variance
 - Consider total variation in z due to variation at locus i:

 $var(z^{(i)}) = var(a_{jk} + c) = var(a_{ji})$ since assume c is fixed.

So, var(
$$z^{(i)}$$
) = var(a_{ji}) = $E(a_{jk}^2) - [E(a_{jk})]^2$

(assuming HW equilibrium) = $(p^2 a_{11}^2 + 2pqa_{12}^2 + q^2 a_{22}^2) - (p^2 a_{11} + 2pqa_{12} + q^2 a_{22})^2 =$

(after a lot of tedious algebra) = $G^{(i)} + \left\{2pq\left[a_{12} - \frac{a_{11} + a_{22}}{2}\right]\right\}^2$ = $G^{(i)} + D^{(i)}$

where
$$\left\{ D^{(i)} = 2pq \left[a_{12} - \frac{a_{11} + a_{22}}{2} \right] \right\}^2$$

- $D^{(i)}$ is called the **dominance variance** contributed by locus *i*

- Why "dominance"?

• Relationship between additive and dominance Variance

- Case 1: no dominance
- Case 2: symmetric over-dominance
- What about other loci that contribute to variation in the trait?
 - Generally difficult (recall complications of 2-locus population genetics) to understand
 - Assuming linkage equilibrium among all loci contributing to variation in the trait:

$$\Delta \bar{z} = \Delta \bar{z}^{(1)} + \Delta \bar{z}^{(2)} + \dots + \Delta \bar{z}^{(k)} = \left[G^{(1)} + G^{(2)} + \dots + G^{(k)}\right]\beta = \left[\sum_{i=1}^{k} G^{(i)}\right]\beta$$

If we define $G = \sum_{i=1}^{k} G^{(i)}$, then

 $\Delta \overline{z} = G \beta$

- This is a version of the **breeder's equation**, which is *the* central equation of quantitative genetics
- Note its similarity to the equation of selection at one locus
- A more traditional form of the breeder's equation is $R = h^2 S$
 - $R = \Delta \overline{z}$ is the "response to selection"
 - *S* = the "selection differential" = difference between the means of the breeders and the population
 - h^2 is the "heritability" = G/P where P is the total ("phenotypic") variability in z due to all genetic and environmental causes
 - This implies that $S = P\beta$
 - P = G + D + E where $D = \sum_{i=1}^{k} D^{(i)}$ to the total "dominance variance" and E is the variation due to "environmental" effects (including genetic interactions besides dominance, such as epistatis)
 - Important: only *G* determines the response to selection since additive effects are the only "predictable" components of genetic variation.
 - Note that additive, dominance variances change as allele frequencies change.