

+ A little about me...

- Background
 - Wenatchee High class of '80
 - Math major (WSU, class of '84)
 - PhD in Applied Math (UC Davis, '89)
 - Postdoc in Zoology (U Texas, 1989-91)
 - Professor of Systematics & Ecology (U Kansas 1991-6)
 - Professor of Mathematics and Biological Sciences (WSU 1996-2009)
 - Professor of Biological Sciences (2009-present)
- Research Areas
 - Population biology
 - Population genetics
 - Evolutionary theory
 - "Evo-demo"
- UBM mentored undergrads
 - PhD programs (Cornell, WSU, FHC)
 - NIH internship
 - Co-authored peer-reviewed publications

+

(Wild) Species encounter changed environments through...

- Habitat destruction
- Climate change
- Colonization
- Biotic invasion
 - Invadee
 - Invader

Species Responses to Altered Environments

■Adjust

- Robustness
- Plasticity

■Move

- Invade, or be invaded
- **■**Evolve
- ■Go extinct

- Needed to predict fate of stressed species
- Primer...
- Basic equations of Evo-Demo:
 - Demography:
 - Evolution:

$$N(t+1) = \overline{R}(t)N(t)$$

$$N(t+1) = \overline{R}(t)N(t)$$

$$p_1(t+1) = p_1(t)\frac{R_1}{\overline{R}(t)}$$

+

Biology of Doom Research Program

- Unpack the canonical evo-demo equations
 - Genetics: beyond clones
 - Nonlinear population dynamics: regulation
 - Phenotypic plasticity: adjustments by individual organisms
 - Incorporate uncertainty
 - Demographic and genetic stochasticity
 - Environmental fluctuations
- Project fate of populations and communities
 - Develop "realistic" models
 - Parameterize models using available data
 - Implement & analyze models

Potential Student Projects

- 1 Phenotypic plasticity and extinction
- ② Genetics and invasion in harsh environments
- ③ Interspecific interactions and invasion
- 4 Population dynamics, evolution, and extinction in structured populations

- +
- Phenotypic plasticity and extinction
- "Adaptive phenotypic plasticity": head start of adapation
- What about "maladaptive plasticity"?
 - Predict direct effects of maladaptive plasticity on persistence
 - Develop physiological models of plasticity
 - Model how species encounter variable environments (adaptive and maladaptive plasticity)
 - Evolution of phenotypic plasticity

Environmentally-sensitive traits

RGR in Pieris rapae

② Genetics and invasion in harsh environments

+

3

Interspecific interactions and invasion

- 4 Population dynamics, evolution, and extinction in structured populations
 - Genetically-based demographic heterogeneity & population growth
 - Age- vs stage-based population projection
 - Seed banks, persistence, and adaptation in novel environments

Potential Student Projects

- 1 Phenotypic plasticity and extinction
- ② Genetics and invasion in harsh environments
- ③ Interspecific interactions and invasion
- 4 Population dynamics, evolution, and extinction in structured populations