
Anthropological Applications of Ancient DNA

Brian M. Kemp Department of Anthropology School of Biological Sciences

What I want you to get out of this lecture

- 1. What is ancient DNA? Importantly how is ancient DNA evidence of great value?
- 2. What are good sources of ancient DNA?
- 3. What are some applications of ancient DNA?

What is ancient DNA?

Ancient DNA research is "defined broadly as the retrieval of DNA sequences from museum specimens, archaeological finds, fossil remains, and other unusual sources of DNA..."

Pääbo et al (2004) *Ann. Rev. Genet.* 38:645-79

Ancient DNA: A unique approach to addressing prehistory

Analyzing ancient DNA allows one to directly test hypotheses that are based on theory from modern DNA studies through the ability to precisely date the age of remains that exhibit genetic types of interest. Ancient DNA: very brief view of a rather short history

First extraction of ancient DNA---from the extinct Quagga (Higuchi et al. 1984)

First extraction of ancient DNA from a human, an Egyptian mummy (Pääbo 1985)

Ancient DNA: Cloning

Ancient DNA: post-PCR explosion of research!

Extraction of ancient DNA from brain tissue, Little Salt Spring site (Pääbo 1988)

First extraction of ancient DNA from human bone (Hagelberg et al. 1989)

Ancient DNA: PCR

Thermus aquaticus yields *Taq* polymerase or *Taq*

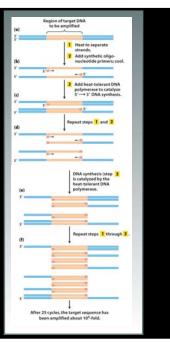
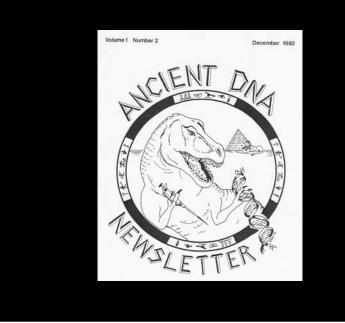
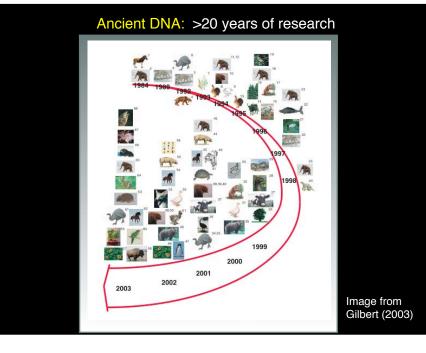
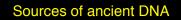
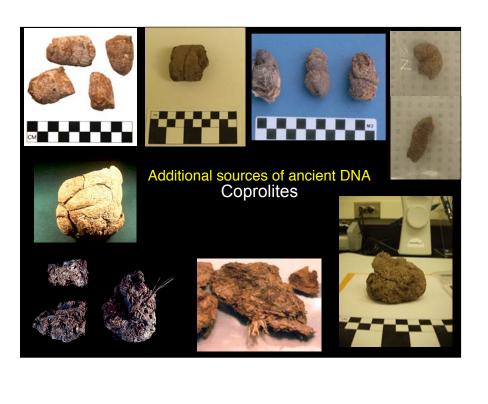



Photo from Pääbo (1993) Scientific American

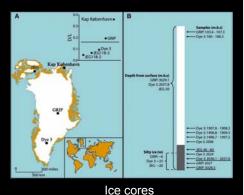

Ancient DNA: post-PCR explosion of research!


Dinosaurs, Miocene chloroplast DNA, and bacteria from the guts of amber encased insects...oh my.





Additional sources of ancient DNA



Quids

Additional sources of ancient DNA

Permafrost and temperate sediments

WARNING!

Ancient DNA Research is Extremely Challenging and Requires a Great Attention to Details

Ancient DNA: Applications

Diet and environmental reconstruction

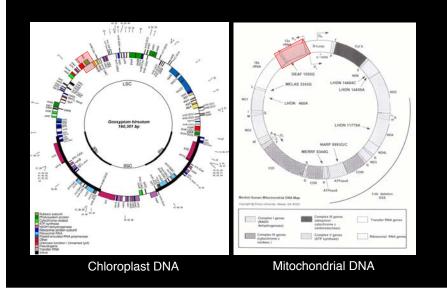
Study the genetics of extinct populations and/or speciesdetermine evolutionary relationships

Study ancient diseases- e.g. the Black Plague

Test for population continuity vs. replacement

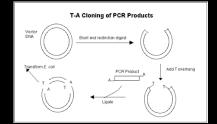
Molecular sex determination

Domestication of plants and animals


Measure the rate of molecular evolution

Ancient DNA: Human molecular coproscopy

Poinar et al. (2001) A molecular analysis of dietary diversity for three archaic Native Americans. *PNAS* 98: 4317-4322


Extracted human mitochondrial DNA from three coprolites from Hinds Cave, Texas that date >2,000 years ago.

Ancient DNA: What the Humans Were Eating

Cloning PCR Product

AACCTATAAAGAACCTATAAAG TTGGCTCTTTCTTGGCTCTTTC AACCTTTAAAGTTGGCCCTTTC AACCTATAAAGTTGGCTCTTTC AACCTTTAAAGTTGGCCCTTTC AACCTTTAAAGTTGGCCCTTTC AACCTTTAAAGTTGGCCCTTTC

Ancient DNA: Ancient Human Diet Reconstruction

Sample I: pronghorn antelope, cottontail rabbit, packrat, squirrel, hackberry, sunflower family, yucca or agave, and cactus

Sample II: packrat, fish, hackberry, oak, sunflower family, yucca or agave, nightshade family, and legume family

Sample III: bighorn sheep, packrat, cotton rat, buckthorn family, hackberry, oak, sunflower family, yucca or agave, legume family, cactus, ocotillo

Ancient DNA: Ancient Human Diet Reconstruction

Indicates that these inhabitants of Hinds Cave had a diverse and well-balance diet.

Macroscopically three plants were confirmed, whereas six were not. Cactus was detectable only macroscopically.

Macroscopically no large mammals were detected, whereas small mammal bones and teeth were detected in the feces.

Ancient DNA: Applications

Diet and environmental reconstruction

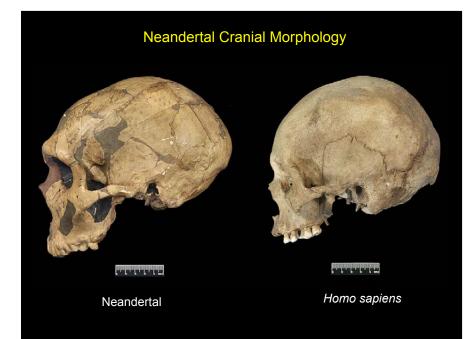
Study the genetics of extinct populations and/or speciesdetermine evolutionary relationships

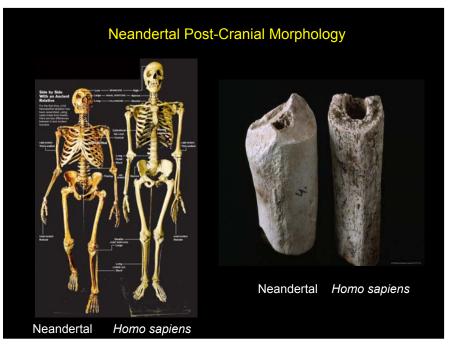
Study ancient diseases- e.g. the Black Plague

Test for population continuity vs. replacement

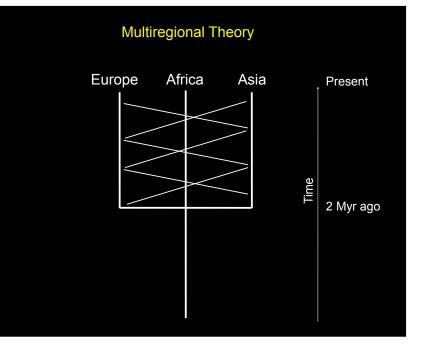
Molecular sex determination

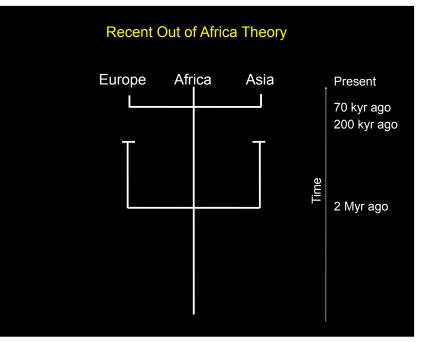
Domestication of plants and animals

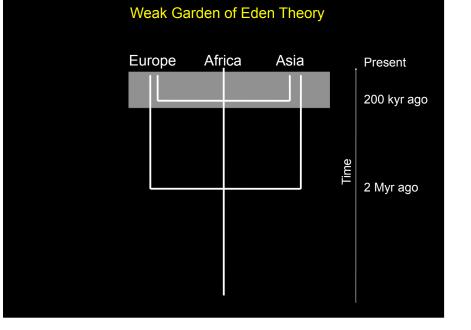

Measure the rate of molecular evolution

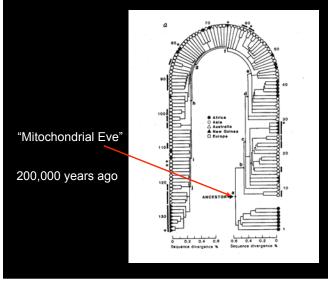


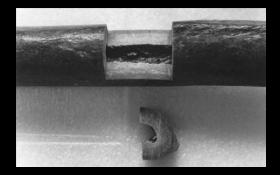
Type Specimen: Neandertal 1

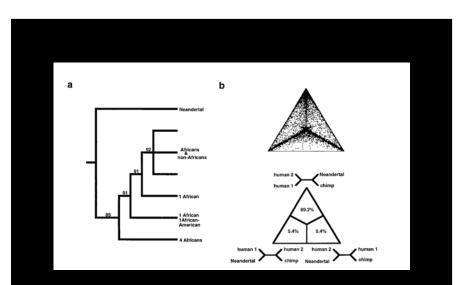



Discovered in 1856, three years before the publication of "Origin of Species"



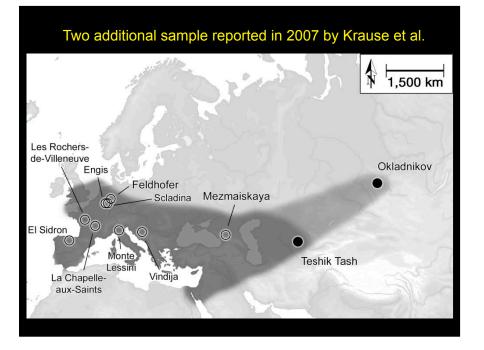





Mitochondrial Variation in Contemporary Humans Cann et al. 1986

The First Genetic Look at A Neandertal Krings et al. 1997 *Cell*

Extracted DNA from the Neandertal type specimen that was discovered in 1856

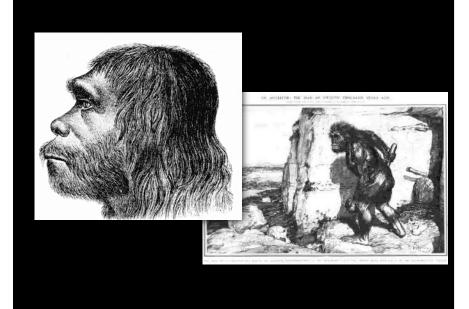

Human/Neandertal split: 550,000-690,00 years ago

I know what you are thinking...it's only one sample. How can we say <u>anything</u> about Neandertal genetic variation?

Nearly a Decade of the Study of Neandertal Genetics

Krings et al., 1997: Feldhofer 1, Germany Ovchinnikov et al., 2000: Mezmaiskaya, northern Caucasus, Russia Krings et al., 2000: Vindija 75, Croatia Schmitz et al., 2002: Feldhofer 2, Germany Serre et al., 2004: Vindija 77 and Vindija 80, Croatia Engis 2, Belgium La-Chapelle-aux-Saints, France

Lalueza-Fox et al., 2005: El Sidrón, northern Spain Beauval et al., 2005: Rochers de Villenevue, France Carmelli et al. 2006: Monte Lessini, Italy Orlando et al. 2006: Scandia Cave, Belgium



RESEARCHARTICLE

A Draft Sequence of the Neandertal Genome

Richard E. Green, "+1; Johannes Krause, "1§ Adrian W. Briggs, "1§ Tomidav Maricic, "1§ Udo Steazel, "1§ Muttin Kircher, "1§ Mick Patterson, "1§ Hang Li,"? Weiwei Zhai, "11 Markus Nis' Vang Fritz, "1 Nanoy, "1, "Kircher, "1 Danad, "1 Annon Sapto Malaspinas," Jeffrep D. Jenson, "1; Tomas Marques-Bonet,", ¹³: C an Allan, "1 Kay Prilie, "1, Matthias Meyer, "1, Herrain, R. Burtano, "1; Heffrey M. Good," ¹³: Rijs O-kultz, "Aynuer Admu-Sapto Malaspinas," Herrain, R. Burtano, "1; Heffrey M. Good," ¹³: Rijs O-kultz, "Aynuer Admu-Sapto Malaspinas," Eric S. Lander, "Carter Russ," Hahnanie, Novoć, "Jaon Affourti, "Kichael Eghodm," Christine Verna," Pavoa Rudan,¹³ Dejana Brajkoric, ¹³ Zejiko Kucan,¹⁰ Ivan Guišt,¹⁰ Vadimir B. Dorothev, "2 Luboy, V. Golevanova," Carles Laubez, ¹⁴, Michael Eghodm," Yaudimir S. Dorothev, ¹⁴ Euno K. Somitz, ^{14,14} Philip L. F. Johnson, ¹⁴ Fean E. Eichler, "1 Jawier Fortes, ¹⁴ Jancis Rass," Rati W. Schmitz, ^{14,14} Philip L. F. Johnson, ¹⁴ Fean E. Eichler, "1 Janet Kelso, "1 Michael Lachmann, ¹ David Reich, ^{2,30} Yard Berg, ¹⁴ Kasmus Nielsen," 1 Janet Kelso, "1 Michael Lachmann, ¹⁴ David Reich, ^{2,30} Yard Bello, ¹⁴

Recent Out of Africa Theory

Ancient DNA Reveals Neandertals With Red Hair, Fair Complexions

Ginger man. Some Neandertals had red hair and pale skin, as seen in this reconstruction of a French fossil.

Report

The Derived *FOXP2* Variant of Modern Humans Was Shared with Neandertals

Johannes Krause,^{1,*} Carles Lalueza-Fox,² Ludovic Orlando,^{3,4} Wolfgang Enard,¹ Richard E. Green,¹ Hernán A. Burbano,¹ Jean-Jacques Hublin,¹ Catherine Hänni,^{3,4} Javier Fortea,⁵ Marco de la Rasilla,⁵ Jaume Bertranpetit,⁶ Antonio Rosas,⁷ and Svante Pääbo¹

Ancient DNA: Applications

Diet and environmental reconstruction

Study the genetics of extinct populations and/or speciesdetermine evolutionary relationships

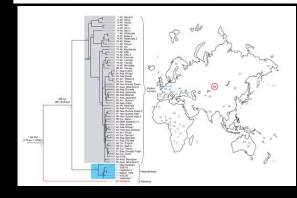
Study ancient diseases- e.g. the Black Plague

Test for population continuity vs. replacement

Molecular sex determination

Domestication of plants and animals

Measure the rate of molecular evolution


LETTERS

natur

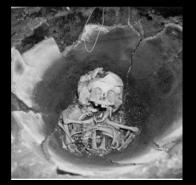
The complete mitochondrial DNA genome of an unknown hominin from southern Siberia

doi:10.1038/nature08976

Johannes Krause¹, Qiaomei Fu¹, Jeffrey M. Good², Bence Viola^{1,3}, Michael V. Shunkov⁴, Anatoli P. Derevianko⁴ & Svante Pääbo¹

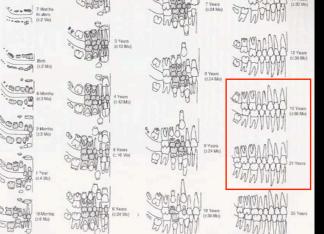
Sex Identification of Children Sacrificed to the Ancient Aztec Rain Gods in Tlatelolco

Isabel De La Cruz, Angélica González-Oliver, Brian M. Kemp, Juan A. Román, David Glenn Smith, and Alfonso Torre-Blanco

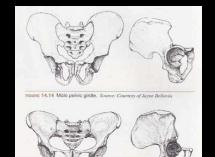

Current Anthropology Volume 49, Number 3, June 2008

Sacrificial Victims

Six-year-old buried directly in ground.



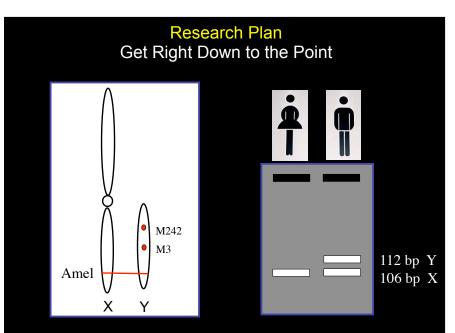
Two-year-old buried in an olla.

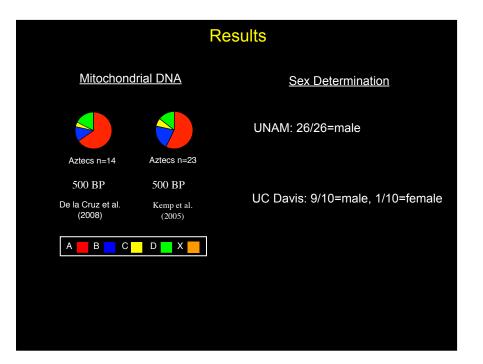

How Old? Dental Eruption

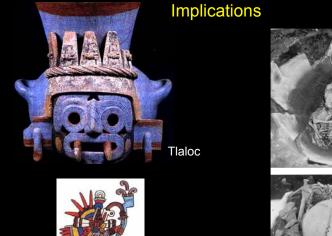
·····

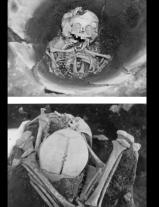
Ehecatl-Quetzalcoatl, from Codex Borgia

Research Question Limited by Morphology Alone




noune 14.15 Female pelvic girdle. Source: Con




FIGURE 14.16 Cranium and mandible: male (left), female (right). Source: Courtesy of Jayne Bellavia

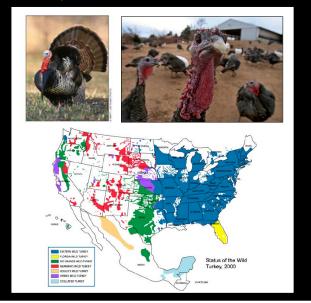
Ehecatl-Quetzalcoatl

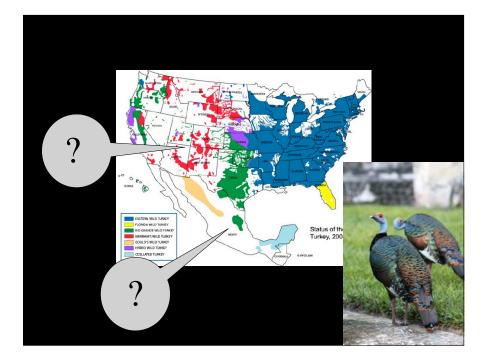
Domestication of plants and animals

Measure the rate of molecular evolution

Ancient DNA: Applications

Diet and environmental reconstruction

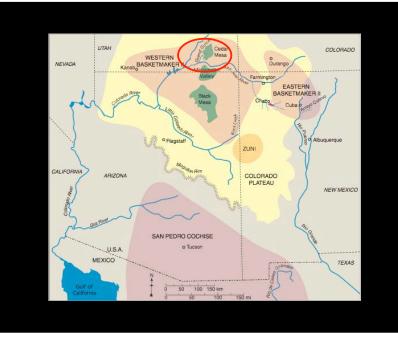

Study the genetics of extinct populations and/or speciesdetermine evolutionary relationships

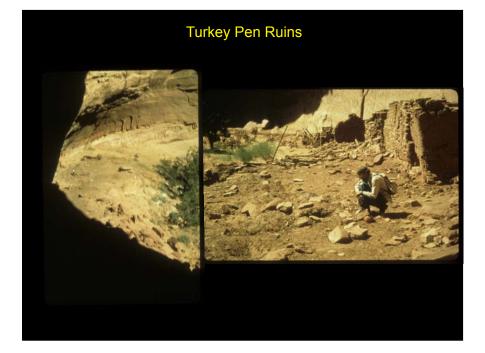

Study ancient diseases- e.g. the Black Plague

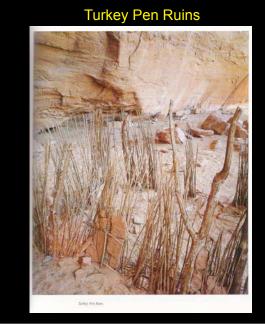
Test for population continuity vs. replacement

Molecular sex determination

Turkey Domestication in the Southwest


Ancient mitochondrial DNA analysis reveals complexity of indigenous North American turkey domestication


Camilla F. Speller^a, Brian M. Kemp^{b.c.}, Scott D. Wyatt^b, Cara Monroe^{c.d}, William D. Lipe^b, Ursula M. Arndt^a, and Dongya Y. Yang^{b.1}

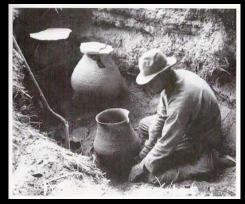
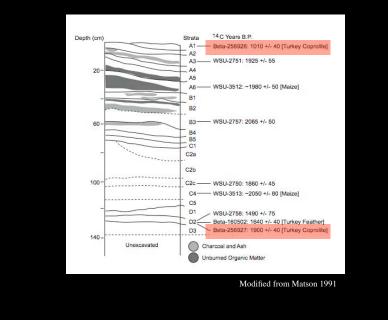
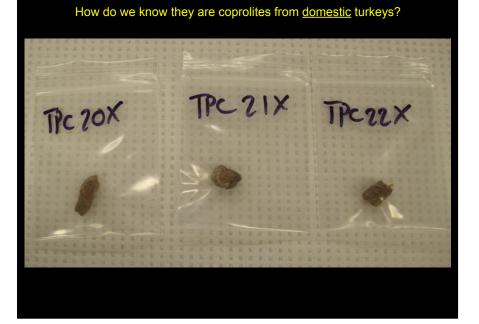

*Ancient DNA Laboratory, Department of Archaeology, Simon Fraser University, Burnaby, BC VSA 156, Canada: "Department of Anthropology, Washington State University, Pullman, WA 99164, "School of Biological Sciences, Washington State University, Pullman, WA 99164; and "Department of Anthropology, University of California, Santa Barbara, CA 93106

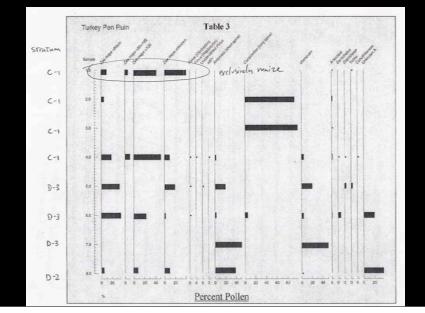
Southwest Turkey Domestication: Hypothesis Imported from Central Mexico

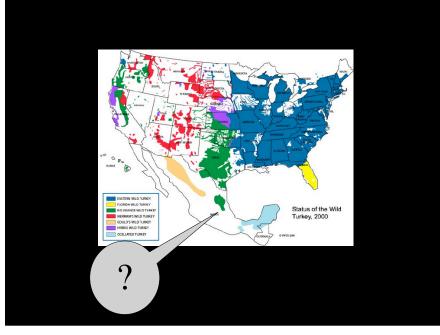
Members of the Green Expedition Excavating Turkey Pen Ruin, 1891

Image from Blackburn and Williamson (1997)

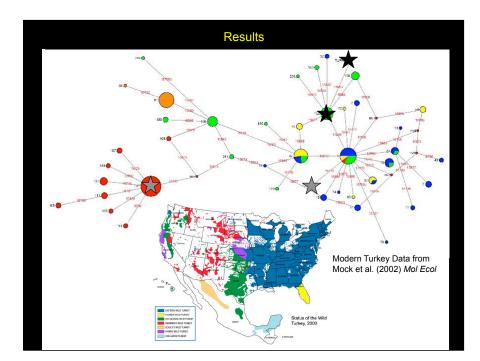
Bob Allen of the Green Expedition Excavating Turkey Pen Ruin, 1891

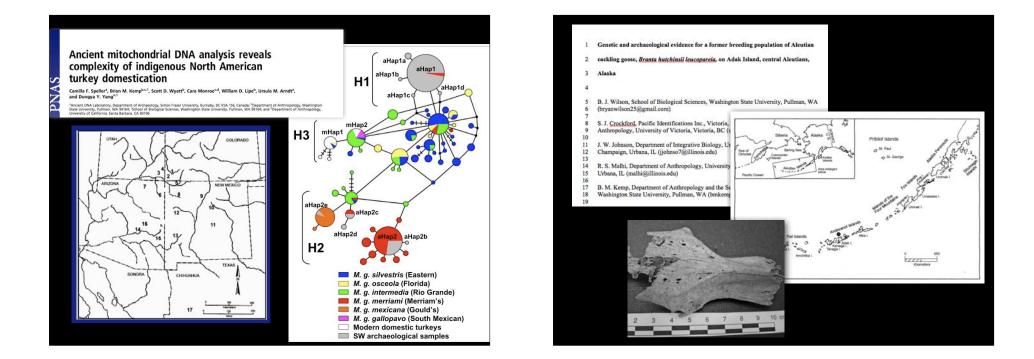





Image from Blackburn and Williamson (1997)



How do we know they were "domestic" turkeys?





Samples of the Extinct *Meleagris gallopavo gallopavo* Courtesy of the Smithsonian

Catalog #	Species:Subspeices	County	State
185258	Meleagris gallopavo gallopavo	Mexico	Michoacan De Ocampo
185259	Meleagris gallopavo gallopavo	Mexico	Michoacan De Ocampo
185260	Meleagris gallopavo gallopavo	Mexico	Michoacan De Ocampo
185261	Meleagris gallopavo gallopavo	Mexico	Michoacan De Ocampo
185262	Meleagris gallopavo gallopavo	Mexico	Michoacan De Ocampo
185263	Meleagris gallopavo gallopavo	Mexico	Michoacan De Ocampo
185264	Meleagris gallopavo gallopavo	Mexico	Michoacan De Ocampo
185265	Meleagris gallopavo gallopa v o	Mexico	Michoacan De Ocampo
186838	Meleagris gallopavo gallopa v o	Mexico	Veracruz-Llave
187318	Meleagris gallopavo gallopa v o	Mexico	Veracruz-Llave

Ancient DNA: Applications

Diet and environmental reconstruction

Study the genetics of extinct populations and/or speciesdetermine evolutionary relationships

Study ancient diseases- e.g. the Black Plague

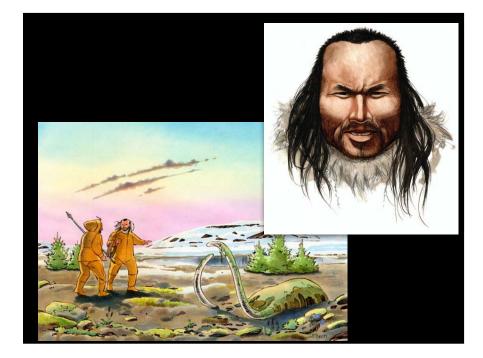
Test for population continuity vs. replacement

Molecular sex determination

Domestication of plants and animals

Measure the rate of molecular evolution

Ancient DNA Studies


The future is now and it's great!

ARTICLES

Ancient human genome sequence of an extinct Palaeo-Eskimo

Mortan Rasmusen¹⁻³⁺, Yingmi Li²⁻³⁺, Stinus Lindgreen¹⁺⁴⁺, Jakob Skou Pedersen¹, Anders Albrechtsen¹, Ida Molke¹, Mai Metspalu², Ene Metspalu², Toomas Kivialid²⁺, Ramneek Gupta², Marcelo Bertalan², Kasper Nielsen¹, M. Thomas F. Gilbert²⁺, Yong Wang², Manass Raghavan², Paula F. Campos¹, Hanne Munkholm Kamu²⁺, Andrew S. Wilson¹, Andrew Gleshi¹¹, Silvana Tridico¹¹⁻², Michael Bunce¹², Elino D. Lorenze, Jonas Binladen¹, Xiaosen Guo²⁻¹, Jaz Daho²⁻¹, Xuoju Zhan²⁻¹, Jao Zama²⁻¹, Zhou Li²⁻¹, Minfeng Chen²⁻³, Ludović Orlando³, Karsten Kristiansen²⁻³, Makel Sak¹, Niels Tommerup¹⁺, Christian Bendixen¹³ Trazey L. Fiere¹, Bjarne Grannow, ¹¹, Morten Meldgard¹¹, Claus Andressen¹, Sandan A. Fedorova³⁻⁹, Ludmila P. Osipova³, Thomas F. G. Higham¹, Christopher Bronk Ramsey¹⁰, Thomas v. O. Hansen², Ranc Nielsen¹⁺, Andres Krogh²⁻⁴, Jun Wang^{2-4,5} & Eske Willerslev¹⁻²

