PheleMarchelblogscandesign SKELETAL SYSTEM

Statics--gravity

Dynamics--motion

General Capabilities of Supportive Systems

1) Accommodate Size Increases

General Capabilities of Supportive Systems (continued)

1) Accommodate Size Increases 2) Accommodate Direction Force Application

Strength of Different Materials Exposed to Compressive, Tensile, and Shear Forces			
MATERIAL	COMPRESSIVE STRENGTH (PA)	TENSILE STRENGTH (PA)	Shear Strengti (Pa)
Bone	165 × 10 ⁶	110 × 10 ⁶	1
Cartilage	27.6×10^{6}	3.0×10^{6}	1
Concrete	41.4 × 10 ⁶	4.0×10^{6}	1
Cast iron	620.5 × 10 ⁶	1.17×10^{6}	124×10^{4}
Granite	103 × 10 ⁶	10×10^{6}	13.8 × 10 ⁶

- If bone is so strong, then how does it break?
- 1) Stress concentration

- If bone is so strong, then how does it break?
- 1) Stress concentration
- 2) Loading

General Capabilities of Supportive Systems (continued)

1) Accommodate Size Increases

 2) Accommodate Direction Force Application
 3) Duration of Force Application

Duration of Force Application

- Continuous Atrophy aneurism, tumor, dislocation
- Unstressed Atrophy weightlessness
- Intermittent
 Hypertrophy

Internal

Response of Bone to Mechanical Factors

Quick Summary

- · Environment of forces affect design
- Physiological response of bone to forces Next,
- Evolutionary response of skeletal system

SUSPENSION SYSTEM

SUSPENSION SYSTEM Static Support

SUSPENSION SYSTEM

Form and Function of the Vertebral Column

