Homework Set \#1 Key

See Nielsen \& Slatkin for solutions to problems 2, 3, 5, 8, 9, \& 11

1. (a) $p^{\prime}=P_{A A}+\left(\frac{1}{2}\right) P_{A a}=p_{m} p_{f}+\left(\frac{1}{2}\right)\left[p_{m}\left(1-p_{f}\right)+p_{f}\left(1-p_{m}\right)\right]=\left(\frac{1}{2}\right)\left(p_{m}+p_{f}\right)$, the even average of the parental allele frequencies. This makes sense because mothers and fathers contribute equally to autosomal genotypes of their offspring.
(b) No. For example, if $p_{f}=0$ and $p_{m}=1$, then $P_{A A}=P_{a a}=0$ and $P_{A a}=1$, which are not HardyWeinberg proportions. (Why?)
(c) Because all the Hardy-Weinberg conditions hold for the offspring generation, the frequency of A will remain at $p=\left(p_{f}+p_{m}\right) / 2$ in their descendants with genotype frequencies in Hardy-Weinberg proportions AA p^{2} : Aa $2 p(1-p)$: aa (1-p) ${ }^{2}$.
2. Nielsen \& Slatkin, p. 19 \#1.4

Let q be the frequency of the recessive allele. Because the population is in HWE, $q=$ $\sqrt{\text { frequency of the disease }}=\sqrt{0.0002}=0.0141$. The frequency of heterozygote carriers is then $2 p q=2 \cdot(1-0.0141) \cdot 0.0141=0.0279$
6. Nielsen \& Slatkin, p. 20 \#1.8
$1^{\text {st }}$ Locus:
Frequency of allele $\mathrm{C}=\frac{2 \cdot 42+16}{2(42+16+32)}=5 / 9$;
Frequency of allele $\mathrm{T}=1-5 / 9=4 / 9$
Frequency of genotype CT $=2 \cdot 5 / 9 \cdot 4 / 9=0.494$
$2^{\text {nd }}$ Locus:
Frequency of allele $A=\frac{2 \cdot 10+10+5}{2(10+10+5+20+5+20)}=1 / 4 ;$
Frequency of allele $C=\frac{2 \cdot 20+10+5}{2(10+10+5+20+5+20)}=11 / 28$
Frequency of genotype CT $=2 \cdot \frac{1}{4} \cdot \frac{11}{28}=0.196$
Frequency of the two locus genotype $(C T, A C)=0.494 \cdot 0.196=0.0968$
7. Nielsen \& Slatkin, p. 126 \#6.2

Assume two diallelic loci, the 4 haplotypes are $A B, A b, a B$, and $a b$ with respective haplotype frequencies $P_{\mathrm{AB}}, P_{\mathrm{Ab}}, P_{\mathrm{aB}}$, and P_{ab}.

There are 6 scenarios with 2 haplotypes missing:
i) $\mathrm{AB} \& \mathrm{Ab}$ missing: $P_{\mathrm{AB}}=P_{\mathrm{Ab}}=0$. Allele frequencies are then $p_{\mathrm{A}}=P_{\mathrm{AB}}+P_{\mathrm{Ab}}=0+0=0$ and, since $p_{\mathrm{B}}=P_{\mathrm{AB}}+P_{\mathrm{aB}}, 0 \leq p_{\mathrm{B}} \leq 1$
ii) aB \& ab missing: $P_{\mathrm{aB}}=P_{\mathrm{ab}}=0$. Allele frequencies are then $p_{\mathrm{A}}=P_{\mathrm{AB}}+P_{\mathrm{Ab}}=1$ and, since $p_{\mathrm{B}}=$ $P_{\mathrm{AB}}+P_{\mathrm{aB},} 0 \leq p_{\mathrm{B}} \leq 1$
iii and iv) Similar reasoning applies to the cases $A B \& a B$ missing, and $A b \& a b$ missing.
v) AB \& ab missing: $P_{\mathrm{AB}}=P_{\mathrm{ab}}=0$. Since $p_{\mathrm{A}}=P_{\mathrm{AB}}+P_{\mathrm{Ab}}=0+P_{\mathrm{Ab}}=P_{\mathrm{Ab}}$ and $p_{\mathrm{B}}=P_{\mathrm{AB}}+P_{\mathrm{aB}}=0+$ $P_{\mathrm{aB}}=P_{\mathrm{aB}}$, then $0 \leq p_{\mathrm{A}} \leq 1$ and $0 \leq p_{\mathrm{B}} \leq 1$.
vi) Similar reasoning to case v.
10. Nielsen \& Slatkin, p. 127 \#6.6
(b) $\mathrm{DO}=P_{\mathrm{AB}} P_{\mathrm{ab}}-P_{\mathrm{Ab}} P_{\mathrm{aB}}=(30 / 1000)(330 / 1000)-(27 / 1000)(370 / 1000)=-0.00009$
(c) The following is the question I meant to ask: Assuming the recombination rate is 0.001, how many generations of random mating will be necessary until the LD is 1% of its original value?
Ans: We know that under these assumptions, $D_{T}=(1-r)^{T} D_{0}$. At what time T is $D_{T}=$ $0.01 \cdot D_{0}$? It's the solution T of $D_{T}=0.01 \cdot D_{0}=(1-0.001)^{T} D_{0}$. Canceling D_{0} from both sides gives the equivalent equation $0.01=.999^{T}$. Solving for T gives $T=\frac{\log 0.01}{\log .999}=$ 4602 generations.

