HANDOUT I.2: Sex linkage and Hardy-Weinberg

Let's consider a diploid population with $X-Y$ sex determination (females are $X X$; males are $X Y$). We want to study evolution of a locus with two alleles on the X-chromosome (with no counterpart on the Y-chromosome).

Some notation:
$p_{f}(t)=$ frequency of the A allele among X gametes in females in generation $t ;$
$p_{m}(t)=$ frequency of the A allele among X gametes in males in generation t.

Under the $\mathrm{H}-\mathrm{W}$ assumptions, the following offspring genotype frequencies are found:

Daughters

$A A: P_{A A}(t+1)=p_{f}(t) p_{m}(t)$
$A a: \quad P_{A a}(t+1)=p_{f}(t)\left[1-p_{m}(t)\right]+p_{m}(t)\left[1-p_{f}(t)\right]$
$a a: P_{a a}(t+1)=\left[1-p_{f}(t)\right]\left[1-p_{m}(t)\right]$

Sons
$A Y: \quad P_{A Y}(t+1)=p_{f}(t)$
$a Y: \quad P_{a Y}(t+1)=1-p_{f}(t)$

Allele frequencies among the offspring (computed from these genotype frequencies) are:

- $p_{f}(t+1)=\frac{1}{2}\left[p_{f}(t)+p_{m}(t)\right] \quad$ (average of allele frequencies in both parent sexes)
- $p_{m}(t+1)=p_{f}(t) \quad$ (the allele frequency among just the female parents)

Evolutionary Dynamics: Suppose we have the extreme case $p_{m}(0)=1, p_{f}(0)=0$:

t	0	1	2	3
$p_{m}(t)$	1	0	0.5	0.25
$p_{f}(t)$	0	0.5	0.25	0.375

Unlike cases we've seen up until now, the evolutionary paths oscillate towards an equilibrium. What equilibrium is eventually reached? It turns out that the frequency of the A allele becomes $p_{\text {eq }}=1 / 3 p_{m}(0)+2 / 3 p_{f}(0)$ in both sexes. In the above case, $p_{\text {eq }}=1 / 3(1)+2 / 3(0)=1 / 3$.

