READING: Nielsen & Slakin, pp. 5-20

SEGREGATION, LINKAGE, AND ESTIMATION

SEGREGATION AND HARDY-WEINBERG

- Idea behind Hardy-Weinberg: "simplest" scenario.

- Generic assumptions: "HARDY-WEINBERG" CONDITIONS
 - 1) Random mating
 - 2) No differences in viability or fecundity of the genotypes
 - 3) No mutation
 - 4) No migration
 - 5) Infinite population size
 - 6) Hermaphrodites, or equal gene frequencies in the two sexes
 - 7) Non-overlapping generations (e.g. annual plants, bivoltine insects).
- Benefits & drawbacks of Hardy-Weinberg conditions.
- **-Question**: Does Mendelian inheritance change genotype frequencies?

ASEXUAL INHERITANCE

- Mixed population with two clones named "1" and "2"
- Number (count) of strain *i* in generation *t* is $N_i(t)$, i = 1, 2
- Asexual inheritance simple: offspring genotypes are exact copies of their parents
- Suppose each individual in the pop has W(t) kids in generation t, regardless of genotype: $N_i(t+1) = W(t)N_i(t)$ i = 1, 2
- What happens?:
 - Consider the fraction (or frequency) of individuals that are of type 1: $p_1(t)$
 - In generation *t*:

$$p_1(t) = \frac{N_1(t)}{N_1(t) + N_2(t)}$$

• In generation t+1:

$$p_{1}(t+1) = \frac{N_{1}(t+1)}{N_{1}(t+1) + N_{2}(t+1)}$$

$$= \frac{W(t)N_{1}(t)}{W(t)N_{1}(t) + W(t)N_{2}(t)} \quad \text{[cancel } W(t)\text{]}$$

$$= \frac{N_{1}(t)}{N_{1}(t) + N_{2}(t)}$$

$$= p_{1}(t)$$

• Numerical Example: Suppose $N_1(t) = 100$, $N_2(t) = 300$, W(t) = 2 (2 offspring/individual)

$$p_1(t) = \frac{100}{100 + 300} = 0.25$$
; $p_1(t+1) = \frac{2.100}{2.100 + 2.300} = \frac{200}{800} = 0.25 = p_1(t)$

- Same result holds with any number of asexually reproducing genotypes
- Observations:
 - 1) When different genotypes reproduce equally well, their relative frequencies do not change;
 - 2) Population size can fluctuate, but no change in genotypic frequencies.
 - 3) Note the method of investigation: "Recursion equation"
 - 4) Relative frequencies, rather than numbers, are often best way to think about problems of population composition.
- Practice Exercises:
 - 1) What happens if W(t) = 3, 0.5, or 10 in the last example?
 - 2) Show that $p_2(t+1) = p_2(t)$.
 - 3) Show that, for any t, $p_2(t) = 1 p_1(t)$, $p_1(t) = 1 p_2(t)$, and $p_1(t) + p_2(t) = 1$.

A SINGLE HAPLOID LOCUS WITH TWO ALLELES

- Similar to asexuals, except there's a brief diploid sexual phase (e.g. fungi)
- Life cycle:

- Consider haploid population with two genotypes, A and a. Let p be the frequency of A and $1 p \equiv q$ be the frequency of the a genotype.
- Mating is random: genotypes of the two mates are independent of one another;
- Frequencies of diploid genotypes are:

$$AA: p^2$$
 $aa: (1-p)^2 = q^2$ $Aa + aA: p(1-p) + (1-p)p = 2p(1-p) = 2pq$

- These are the "familiar" Hardy-Weinberg proportions
- What about the frequencies of A and a in the offspring?
 - All offspring of AA are A's, aa are a's, while half of Aa's are A and half are a
 - Use a prime (') to denote "next generation"
 - Get

A:
$$p' = p^2 + (1/2) \cdot 2pq = p^2 + pq = p(p+q) = p[p+(1-p)] = p$$

a: $q' = 1 - p' = 1 - p = q$

Punch line: Genotype frequencies do not change.

- Haploid vs. asexuals
 - 1) Haploids can have mating type-linked genes
 - 2) When there's more than 1 locus, haploid genotypes can recombine

A SINGLE DIPLOID LOCUS WITH TWO ALLELES

- genotype frequencies vs. gene or allele frequencies
 - We can determine the <u>allele</u> frequencies from the genotype frequencies:

• Freq. of allele
$$A = p = \frac{N_A}{N_A + N_a}$$
; Freq. of allele $a = q = 1 - p = \frac{N_a}{N_A + N_a}$.

• Freq. of genotype
$$AA = P_{AA} = \frac{N_{AA}}{N_{AA} + N_{Aa} + N_{aa}}$$
, etc.

• Then
$$p = P_{AA} + 1/2 P_{Aa}$$
, $q = P_{aa} + \frac{1}{2} P_{Aa}$.

- Practice exercises:
 - (1) Show this last result using numbers of alleles. NOTE: $N_A = 2N_{AA} + N_{Aa}$, etc.
 - (2) Verify the above formulas.
 - (3) Show that $P_{Aa} = 1 P_{AA} P_{aa}$. (Hint: Show that $P_{AA} + P_{Aa} + P_{aa} = 1$.)
- <u>Note: cannot do converse</u>, i.e. compute genotype frequencies from allele frequencies, without making additional assumptions.
- A given p is consistent with many values of P_{AA} and P_{Aa}

$$-\text{e.g. } P_{AA}: P_{Aa}: P_{aa} = \frac{1}{2}: 0: \frac{1}{2} \text{ and } \frac{1}{3}: \frac{1}{3}: \frac{1}{3} \text{ both correspond to } p = 1/2.$$

- *Practice exercises*: Verify this example. Find other genotype frequencies corresponding to 1/2.
- Questions:
 - Does Mendelian inheritance change genotype frequencies?
 - If so, what happens to the genotype frequencies?
- Two Answers:
 - 1) Straightforward-but-tedious way: Consider all possible matings.
 - 2) Easier way
 - use *intuition*: random mating = random union of haploid gametes.
 - if intuition is correct, then:

frequencies of A and a among the gametes produced = frequencies in mating adults: p and q=1-p. As with the haploid results, random union of gametes implies:

$$P'_{AA} = p^2$$
, $P'_{Aa} = 2 p (1 - p) = 2pq$, $P'_{aa} = (1 - p)^2 = q^2$ (the notorious HARDY-WEINBERG PROPORTIONS!)

- Note: $p' = P_{AA} + \frac{1}{2}P_{Aa} = p^2 + \frac{1}{2}2p(1-p) = p(p+1-p) = p!$ (as we you might expect).
- *Practice exercise*: Show that q' = q.
- Is our intuition correct?
 - Consider the more tedious way. (see HANDOUT I.1: Random mating = Random Union of Gametes)

- Yes, intuition is correct.

• Hardy-Weinberg Proportions for multiple alleles:

– Above results generalize to multiple alleles (named " A_1 ", " A_s ", " A_3 ", ...): $p_3' = p_3$, $P_{33}' = p_3^2$, $P_{13}' = 2p_1p_3$, etc.

• Predictions:

If the Hardy-Weinberg assumptions hold:

- (1) Allele frequencies do not change;
- (2) <u>Allele</u> frequencies equal those in the reference population, p_0 and $q_0 = 1 p_0$;
- (3) Genotype frequencies may change;
- (4) <u>Genotype</u> frequencies will not change *after* the first generation;
- (5) Genotype frequencies after the first generation may be found from reference allele frequencies: $P_{AA} = p_0^2$, $P_{Aa} = 2p_0q_0$, and $P_{aa} = q_0^2$.
- de Finetti Diagram and Hardy-Weinberg Dynamics

$$-x = P_{AA}$$
, $y = P_{Aa}$, $z = P_{aa}$

 parabolic curve represents Hardy-Weinberg equilibria for different allele frequencies.

• Implications:

- (A) Neutral Stability:
- (B) Variation Maintained
- (C) Parameter Number Reduced
- (D) Null Model

TWO COMPLICATIONS

(1) Two sexes with unequal allele frequencies

- Let frequency of A be p_f in female gametes, p_m in male gametes,
 - Frequency of a is $q_f \equiv 1 p_f$ in females, etc.
- A mating table for gametes:

			Female Gametes:	
			\boldsymbol{A}	а
		frequency	p_f	$q_{\scriptscriptstyle f}$
Male	\boldsymbol{A}	$p_{\scriptscriptstyle m}$	$p_m p_f$ (AA)	$p_m q_f (Aa)$
Gametes:	а	$q_{\scriptscriptstyle m}$	$q_m p_f$ (Aa)	$q_m q_f$ (aa)

- Offspring (Both sexes) $AA: P'_{AA} = p_m p_f \qquad Aa: P'_{Aa} = p_m q_f + p_f q_m \qquad aa: P'_{aa} = q_m q_f$

$$AA: P'_{AA} = p_m p_f$$

$$Aa: P'_{Aa} = p_m q_f + p_f q_m$$

$$aa: P'_{aa} = q_{m}q_{f}$$

- Biological Conclusion: Genotype and allele frequencies within each sex have become the same.
- (2) Sex Linkage: What if genes are not autosomally inherited?
 - In mammals & many other animals, XX = female, XY = male
 - see HANDOUT I.2: Sex linkage and Hardy-Weinberg
 - General Conclusions:

].

- (1) Weighted average of allele frequencies remains constant through time: $\frac{1}{2} p_m(t) + \frac{2}{2} p_f(t) = \frac{1}{2} p_m(t-1) + \frac{2}{2} p_f(t-1) = \dots = \frac{1}{2} p_m(0) + \frac{2}{2} p_f(0)$
- (2) Allele frequencies in both sexes ultimately approach this average, regardless of sex ratio.
- (3) Allele frequencies always oscillates toward the equilibrium [unless $p_f(0) = p_m(0)$
 - (4) Magnitude of the difference in allele frequencies in sexes decreases by 1/2 each generation: $|p_f(t+1) - p_m(t+1)| = \frac{1}{2} |p_f(t) - p_m(t)|$
- Some biological consequences of sex linkage: If the frequency of allele A is the same in both sexes, i.e., $p_f = p_m = p$, then among the offspring:

Females

AA
$$p^2$$

Aa $2p(1-p)$
 $aa (1-p)^2$

Males

AY p
 $aY 1-p$

- Recessive genes are expressed much more frequently in the heterogametic sex
 - E.g., if A codes for a recessive trait and p = 0.01 in both sexes, then the ratio of affected male to female offspring (AY:AA) will be $\frac{1}{100} : \frac{1}{10,000}$ or 100:1.
- Other genetic sex-determining systems:
 - *XX-XO* (some spiders, beetles) Works like *XX-XY*.
 - ZW-ZZ (birds, lepidoptera) Same except reverse male/female labels
 - Haplo-diploids (hymenoptera) All loci are sex-linked.
 - Principles of sex-linkage remain the same: only the labels have been changed!