SEGREGATION, LINKAGE, AND ESTIMATION

Segregation and Hardy-Weinberg

READING: Nielsen \& Slakin, pp. 5-20

- Idea behind Hardy-Weinberg: "simplest" scenario.
- Generic assumptions: "HARDY-WEINBERG" CONDITIONS

1) Random mating
2) No differences in viability or fecundity of the genotypes
3) No mutation
4) No migration
5) Infinite population size
6) Hermaphrodites, or equal gene frequencies in the two sexes
7) Non-overlapping generations (e.g. annual plants, bivoltine insects).

- Benefits \& drawbacks of Hardy-Weinberg conditions.
-Question: Does Mendelian inheritance change genotype frequencies?

Asexual InHERITANCE

- Mixed population with two clones named "1" and "2"
- Number (count) of strain i in generation t is $N_{i}(t), \mathrm{i}=1,2$
- Asexual inheritance simple: offspring genotypes are exact copies of their parents
- Suppose each individual in the pop has $W(t)$ kids in generation t, regardless of genotype:

$$
N_{i}(t+1)=W(t) N_{i}(t) i=1,2
$$

- What happens?:
- Consider the fraction (or frequency) of individuals that are of type 1: $p_{1}(t)$
- In generation t :

$$
p_{1}(t)=\frac{N_{1}(t)}{N_{1}(t)+N_{2}(t)}
$$

- In generation $t+1$:

$$
\begin{aligned}
p_{1}(t+1) & =\frac{N_{1}(t+1)}{N_{1}(t+1)+N_{2}(t+1)} \\
& =\frac{W(t) N_{1}(t)}{W(t) N_{1}(t)+W(t) N_{2}(t)} \quad[\text { cancel } W(t)] \\
& =\frac{N_{1}(t)}{N_{1}(t)+N_{2}(t)} \\
& =p_{1}(t)
\end{aligned}
$$

- Numerical Example: Suppose $N_{1}(t)=100, N_{2}(t)=300, W(t)=2$ (2 offspring/individual)

$$
p_{1}(t)=\frac{100}{100+300}=0.25 ; p_{1}(t+1)=\frac{2 \cdot 100}{2 \cdot 100+2 \cdot 300}=\frac{200}{800}=0.25=p_{1}(t)
$$

- Same result holds with any number of asexually reproducing genotypes
- Observations:

1) When different genotypes reproduce equally well, their relative frequencies do not change;
2) Population size can fluctuate, but no change in genotypic frequencies.
3) Note the method of investigation: "Recursion equation"
4) Relative frequencies, rather than numbers, are often best way to think about problems of population composition.

- Practice Exercises:

1) What happens if $W(t)=3,0.5$, or 10 in the last example?
2) Show that $p_{2}(t+1)=p_{2}(t)$.
3) Show that, for any $t, p_{2}(t)=1-p_{1}(t), p_{1}(t)=1-p_{2}(t)$, and $p_{1}(t)+p_{2}(t)=1$.

A Single haploid Locus With Two Alleles

- Similar to asexuals, except there's a brief diploid sexual phase (e.g. fungi)
- Life cycle:

- Consider haploid population with two genotypes, A and a. Let p be the frequency of A and $1-p \equiv q$ be the frequency of the a genotype.
- Mating is random: genotypes of the two mates are independent of one another;
- Frequencies of diploid genotypes are:
$A A: p^{2} \quad a a:(1-p)^{2}=q^{2} \quad A a+a A: p(1-p)+(1-p) p=2 p(1-p)=2 p q$
- These are the "familiar" Hardy-Weinberg proportions
- What about the frequencies of A and a in the offspring?
- All offspring of $A A$ are A 's, $a a$ are a 's, while half of $A a$'s are A and half are a
- Use a prime (') to denote "next generation"
- Get

$$
\begin{aligned}
& A: \quad p^{\prime}=p^{2}+(1 / 2) \cdot 2 p q=p^{2}+p q=p(p+q)=p[p+(1-p)]=p \\
& a: q^{\prime}=1-p^{\prime}=1-p=q
\end{aligned}
$$

Punch line: Genotype frequencies do not change.

- Haploid vs. asexuals

1) Haploids can have mating type-linked genes
2) When there's more than 1 locus, haploid genotypes can recombine

A Single Diploid Locus With Two Alleles

- genotype frequencies vs. gene or allele frequencies
- We can determine the allele frequencies from the genotype frequencies:
- Freq. of $\underline{\text { allele }} A=p=\frac{N_{A}}{N_{A}+N_{a}} ;$ Freq. of allele $a=q=1-p=\frac{N_{a}}{N_{A}+N_{a}}$.
- Freq. of genotype $A A=P_{A A}=\frac{N_{A A}}{N_{A A}+N_{A a}+N_{a a}}$, etc.
- Then $p=P_{A A}+1 / 2 P_{A a}, q=P_{a a}+\frac{1}{2} P_{A a}$.
- Practice exercises:
(1) Show this last result using numbers of alleles. NOTE: $N_{A}=2 N_{A A}+N_{A a}$, etc.
(2) Verify the above formulas.
(3) Show that $P_{A a}=1-P_{A A}-P_{a a}$. (Hint: Show that $P_{A A}+P_{A a}+P_{a a}=1$.)
- Note: cannot do converse, i.e. compute genotype frequencies from allele frequencies, without making additional assumptions.
- A given p is consistent with many values of P_{AA} and $P_{\text {Aa }}$
- e.g. $P_{A A}: P_{A a}: P_{a a}=\frac{1}{2}: 0: \frac{1}{2}$ and $\frac{1}{3}: \frac{1}{3}: \frac{1}{3}$ both correspond to $p=1 / 2$.
- Practice exercises: Verify this example. Find other genotype frequencies corresponding to 1/2.

- Questions:

- Does Mendelian inheritance change genotype frequencies?
- If so, what happens to the genotype frequencies?
- Two Answers:

1) Straightforward-but-tedious way: Consider all possible matings.
2) Easier way

- use intuition : random mating = random union of haploid gametes.
- if intuition is correct, then:
frequencies of A and a among the gametes produced $=$ frequencies in mating adults: p and $q=1-p$. As with the haploid results, random union of gametes implies:

$$
P_{A A}^{\prime}=p^{2}, P_{A a}^{\prime}=2 p(1-p)=2 p q, P_{a a}^{\prime}=(1-p)^{2}=q^{2}
$$ (the notorious HARDY-WEINBERG PROPORTIONS!)

- Note: $p^{\prime}=P_{A A}+\frac{1}{2} P_{A a}=p^{2}+\frac{1}{2} 2 p(1-p)=p(p+1-p)=p!$ (as we you might expect).
- Practice exercise: Show that $q^{\prime}=q$.
- Is our intuition correct?
- Consider the more tedious way. (see HANDOUT I.1: Random mating = Random Union of Gametes)
- Yes, intuition is correct.

- Hardy-Weinberg Proportions for multiple alleles:

- Above results generalize to multiple alleles (named " A_{1} ", " A_{s} ", " $A_{3} ", \ldots$):

$$
p_{3}^{\prime}=p_{3}, P_{33}^{\prime}=p_{3}^{2}, P_{13}^{\prime}=2 p_{1} p_{3}, \text { etc. }
$$

- Predictions:

If the Hardy-Weinberg assumptions hold:
(1) Allele frequencies do not change;
(2) Allele frequencies equal those in the reference population, p_{0} and $q_{0}=1-p_{0}$;
(3) Genotype frequencies may change;
(4) Genotype frequencies will not change after the first generation;
(5) Genotype frequencies after the first generation may be found from reference allele frequencies: $P_{A A}=p_{0}^{2}, P_{A a}=2 p_{0} q_{0}$, and $P_{a a}=q_{0}^{2}$.

- de Finetti Diagram and Hardy-Weinberg Dynamics

$$
-x=P_{A A}, y=P_{A a}, z=P_{a a}
$$

- parabolic curve represents Hardy-

Weinberg equilibria for different allele frequencies.

- Implications:
(A) Neutral Stability:
(B) Variation Maintained
(C) Parameter Number Reduced
(D) Null Model

Two COMPLICATIONS

(1) Two sexes with unequal allele frequencies

- Let frequency of A be p_{f} in female gametes, p_{m} in male gametes,
- Frequency of a is $q_{f} \equiv 1-p_{f}$ in females, etc.
- A mating table for gametes:

		Female Gametes:		
		frequency	p_{f}	a
		p_{f}		
Male				
Gametes:	A	p_{m}	$p_{m} p_{f}(A A)$	$p_{m} q_{f}(A a)$
	a	q_{m}	$q_{m} p_{f}(A a)$	$q_{m} q_{f}(a a)$

- Offspring (Both sexes)
$A A: P_{A A}^{\prime}=p_{m} p_{f} \quad A a: P_{A a}^{\prime}=p_{m} q_{f}+p_{f} q_{m} \quad a a: P_{a a}^{\prime}=q_{m} q_{f}$
- Biological Conclusion: Genotype and allele frequencies within each sex have become the same.
(2) Sex Linkage: What if genes are not autosomally inherited?
- In mammals \& many other animals, $X X=$ female, $X Y=$ male
- see HANDOUT I.2: Sex linkage and Hardy-Weinberg
- General Conclusions:
(1) Weighted average of allele frequencies remains constant through time:
$1 / 3 p_{m}(t)+2 / 3 p_{f}(t)=1 / 3 p_{m}(t-1)+2 / 3 p_{f}(t-1)=\cdots=1 / 3 p_{m}(0)+2 / 3 p_{f}(0)$
(2) Allele frequencies in both sexes ultimately approach this average, regardless of sex ratio.
(3) Allele frequencies always oscillates toward the equilibrium [unless $p_{f}(0)=p_{m}(0)$].
(4) Magnitude of the difference in allele frequencies in sexes decreases by $1 / 2$ each generation: $\left|p_{f}(t+1)-p_{m}(t+1)\right|=\frac{1}{2}\left|p_{f}(t)-p_{m}(t)\right|$
- Some biological consequences of sex linkage: If the frequency of allele A is the same in both sexes, i.e., $p_{f}=p_{m}=p$, then among the offspring:

Females \qquad
$A A \quad p^{2}$
$A a \quad 2 p(1-p)$

Males
AY p
$a Y \quad 1-p$
aa $(1-p)^{2}$

- Recessive genes are expressed much more frequently in the heterogametic sex
- E.g., if A codes for a recessive trait and $p=0.01$ in both sexes, then the ratio of affected male to female offspring $(A Y: A A)$ will be $\frac{1}{100}: \frac{1}{10,000}$ or $100: 1$.
- Other genetic sex-determining systems:
- $X X-X O \quad$ (some spiders, beetles) Works like $X X-X Y$.
- ZW-ZZ (birds, lepidoptera) Same except reverse male/female labels
- Haplo-diploids (hymenoptera) All loci are sex-linked .
- Principles of sex-linkage remain the same: only the labels have been changed!

