HANDOUT II.2: Interpreting F Statistics

- Two subpopulations: $s=1,2$
- Two alleles A and a with frequencies p_{s} and $q_{s}=1-p_{s}$ in subpopulation s
- $f_{s}=$ inbreeding coefficient in subpopulation s
- genotype frequencies in subpopulation s :

$$
\begin{aligned}
& P_{A A, s}=p_{s}^{2}+f_{s} p_{s} q_{s} \\
& P_{A a, s}=\left(1-f_{s}\right) 2 p_{s} q_{s}=H_{s} \text { ("observed" diversity in subpop } s \text {) } \\
& P_{a a, s}=q_{s}^{2}+f p_{s} q_{s}
\end{aligned}
$$

- Consider 6 distinct scenarios, all with $\bar{p}=\left(p_{1}+p_{2}\right) / 2=0.5$:

subpop 1	subpop 2	$\boldsymbol{F}_{\text {IS }}$	$\boldsymbol{F}_{\text {ST }}$	$\boldsymbol{F}_{\text {IT }}$
$p_{1}=0.5$	$p_{2}=0.5$	0	0	0
$f_{1}=0$	$f_{2}=0$	$p_{2}=1$		
$p_{1}=0$	0	1	1	
$f_{1}=0$	$p_{2}=0.8$			
$f_{2}=0.2$	0	0.36	0.36	
$f_{1}=0$	$p_{2}=0.8$			
$f_{2}=0.1$	0.1	0.36	0.424	
$f_{1}=0.1$	$p_{2}=0.8$			
$f_{2}=0.2$	0.1	0.36	0.424	
$p_{1}=0.2$	0.1	0.36	0.424	
$f_{1}=0$	$p_{2}=0.8$			
$p_{2}=0.2$				

