NONRANDOM MATING, GENETIC DRIFT, \& MUTATION

Nonrandom Mating/Inbreeding

READING: Nielsen \& Slatkin, pp. 13-16, 59-63, 198-205
-Will distinguish two types of nonrandom mating:
(1) Assortative mating: mating between individuals with similar phenotypes or among individuals that occur in a particular location.
(2) Inbreeding: mating between related individuals.

- Both types of nonrandom mating may have similar consequences since individuals with similar phenotypes often have similar genotypes.
- It is often difficult to separate cause from effect.
- E.g., individuals with similar phenotypes may mate because
a) phenotypic assortative mating occurs;
b) mating with relatives is preferred;
c) matings are primarily based on proximity.

- Population subdivision: The Wahlund Effect

- It turns out that population subdivision per se can effect the distribution of genotypes in the entire population.
- Consider a locus with 2 alleles (A and a) and a collection of isolated subpopulations numbered 1, 2, 3, ...
- Let the frequencies of A and a in subpopulation i be p_{i} and q_{i}.
- Assuming random mating within each (isolated) subpopulation:
- $\operatorname{Freq}(A A)$ in subpopulation $i=p_{i}^{2}$
- $\operatorname{Freq}(A a)$ in subpopulation $i=2 p_{i} q_{i}$
- $\operatorname{Freq}(a a)$ in subpopulation $i=q_{i}^{2}$
- Let $\bar{p}=\operatorname{Avg}\left(p_{i}\right)=$ average freq. of A across all subpopulations.
- Likewise, let $\bar{q}=\operatorname{Avg}\left(q_{i}\right)=1-\bar{p}$
- What is the average frequency of each genotype over all the subpopulations?
- Consider $A A$ homozygotes first:
- From Fun Facts: $\operatorname{Var}(X)=E\left(X^{2}\right)-[E(X)]^{2}$ so $E\left(X^{2}\right)=[E(X)]^{2}+\operatorname{Var}(X)$
$-\operatorname{So}, \operatorname{Avg}\left(p_{i}^{2}\right)=\overline{p^{2}}=\bar{p}^{2}+\operatorname{Var}(p)$
- Similarly, for a a homozygotes:
$-\operatorname{Avg}\left(q_{i}^{2}\right)=\bar{q}^{2}=\bar{q}^{2}+\operatorname{Var}(q)=\bar{q}^{2}+\operatorname{Var}(p)$ since $\operatorname{Var}(q)=\operatorname{Var}(1-p)=\operatorname{Var}(p)$.
- Finally, for $A a$ heterozygotes:
$-\operatorname{Avg}\left(2 p_{i} q_{i}\right)=1-\overline{p^{2}}-\overline{q^{2}}=1-\bar{p}^{2}-\bar{q}^{2}-2 \operatorname{Var}(p)=2 \bar{p} \bar{q}-2 \operatorname{Var}(p)$.

- A Thought Experiment:

- Suppose genotypes were randomly sampled from a population whose substructure was unknown.
- The frequencies of A and a in sample would be \bar{p} and \bar{q}.
- With random mating, would then expect to find genotypes in proportions

$$
A A: A a: a a=\bar{p}^{2}: 2 p q: \bar{q}^{2} .
$$

- But, the genotype frequencies observed would be $A A: A a: a a=\overline{p^{2}}: \overline{2 p q}: \overline{q^{2}}=$ $\bar{p}^{2}+\operatorname{Var}(p): 2 \bar{p} \bar{q}-2 \operatorname{Var}(p): \bar{q}^{2}+\operatorname{Var}(p)$.
- I.e., would find an excess of homozygotes and a deficit of heterozygotes, compared to expectations.
- Why? Simply because of population subdivision and, in particular, variance in allele frequencies across subpopulations.
- Given across-subpopulations differences in allele frequencies, the apparent excess in homozygotes and deficit of heterozygotes from what is expected were the entire population to mate at random defines what is called the Wahlund Effect.
- The Wahlund effect is a common "cause" of non-conformity to Hardy-Weinberg expectations in population samples.

- Inbreeding

- Will now consider the genetic consequences of mating between relatives: "inbreeding."
- In 1920's, Sewall Wright invented an ingenious approach to tracking genotypes through pedigrees based on the probability that allele copies are "identical by descent."
- Will follow the French geneticist Malecot's reworking of Wright's method here.

- Identity by descent (IBD): Two alleles are "identical by descent" if
(1) both are descended from the same allele in a common ancestor
or
(2) one allele is descended from the other.
- Will mean IBD relative to a specific base population (whose alleles are deemed to be not IBD).
- Definition: The inbreeding coefficient, f_{j}, of an individual J is the probability that its two gene copies at a locus are identical by descent.
- Once f_{J} is known, it's not hard to find the probabilities that J is $A A, A a$, or $a a$:
- Consider a randomly chosen individual:
- With probability f_{J}, both gene copies in that individual are IBD.
- Then both will be A if the allele they were copied from in the base population were A.
- But, A occurs with frequency p in the base population, so the probability of being an $A A$ given both genes are IBD is p.
\Rightarrow the probability of getting two A alleles that are IBD is $f_{J} p$.
- Likewise, the probability of being $a a$ with both genes are IBD is $f_{f}(1-p)$.
- With probability $1-f_{J}$, the two genes in an individual will not be IBD.
- Must have descended from different allele copies in the base population.
- Assuming the copies are made independently, then with probability $p \times p=p^{2}$, the copied alleles are both $A($ genotype $A A)$, etc.
- Putting this all together, have:

$$
\begin{array}{|l|}
\hline P_{M}=\left(1-f_{J}\right) p^{2}+f_{j} p \\
P_{s t}=\left(1-f_{j}\right) 2 p(1-p) \\
P_{a \alpha}=\left(1-f_{j}\right)(1-p)^{2}+f_{J}(1-p) \\
\hline
\end{array}
$$

- Great! So now only need to determine f_{j}. Thanks to Wright, this is very easy to do.
- E.g., Let's find f_{J} in the pedigree above.
- Need only concentrate on the central part of the pedigree:

$$
\begin{aligned}
f_{J} & =\operatorname{Prob}(e=c) \times \operatorname{Prob}\left(c=c^{\prime}\right) \times \operatorname{Prob}\left(c^{\prime}=g\right) \\
& =1 / 2 \times 1 / 2 \times 1 / 2 \\
& =1 / 8
\end{aligned}
$$

- So the expected genotype frequencies for this pedigree are:

$$
\begin{aligned}
& P_{M}=(7 / 8) p^{2}+1 / 8 p \\
& P_{A z}=(7 / 8) 2 p(1-p) \\
& P_{M}=(7 / 8)(1-p)^{2}+1 / 8(1-p)
\end{aligned}
$$

- ASIDE: What is the average frequency of A among individuals with inbreeding coefficient f_{f} ?

$$
\begin{aligned}
\operatorname{Freq}(A) & =P_{M}+\frac{1}{2} P_{A z}=\left[\left(1-f_{J}\right) p^{2}+f_{J} p\right]+\frac{1}{2}\left[\left(1-f_{j}\right) 2 p(1-p)\right] \\
& =\left(1-f_{J}\right)\left[p^{2}+p-p^{2}\right]+f_{J} p=\left(1-f_{J}\right) p+f_{J} p \\
& =p
\end{aligned}
$$

- Inbreeding does not affect allele frequencies on average, but does affect the probabilities that $2 A$'s or $2 a$'s co-occur in an individual.
- Computing Inbreeding Coefficients (in general)
- Say we want to find f_{l} in the pedigree at right:
- Rules:
(1) Enumerate each loop
(2) Each loop must
a) go through each individual no more than once
b) only change from up to down once
(3) Multiply by $1 / 2$ for each passage through an individual
- If the passage through an individual involves a change of direction (up/down) multiply

by $(1+f) / 2$ instead of $1 / 2$, where f is the inbreeding coefficient for that individual.
(4) Add the probabilities of each loop.
- For the above example: $\quad f_{l}=\quad \frac{c}{h \cdot} \cdot h_{2} \cdot \frac{1}{2} \cdot\left(1+{ }^{B}\right) / 2 \cdot \frac{D}{2} \cdot \frac{1}{2}$

$$
\begin{aligned}
& +\frac{G}{E} \cdot L_{2} \cdot(1+0) / 2 \cdot \frac{1}{2} \\
& C \\
& +1 / 2 \cdot\left(1+f_{E}\right) / 2 \cdot \frac{1}{2} \\
= & 1 / 4+1 / 6+(1+K) / 8=1 / 6+1 / 6+9 / 64 \\
= & 7 / 32
\end{aligned}
$$

- Some forbidden loops: IGECBDEGI (goes through G twice)

IJDBCEGI(already counted)
IGECBDEJI (loop ECBDE already accounted for in f_{E})

- Evolutionary Application: Kin Selection
- Probability that two individuals share an allele descended from a common ancestor is called the kinship coefficient or coefficient of consanguinity.
- Kinship coefficient between individuals A and B is denoted $F_{\text {AB }}$.
- What is $F_{G J}$ in the last example?
- Clearly, it is the inbreeding coefficient of their offspring I, $f_{l}=7 / 32$.
- The connection between f and $F_{A B}$:
- The kinship coefficient of two individuals is equal to the inbreeding coefficient of their (perhaps hypothetical) offspring
- e.g., $F_{\text {mother,daughter }}=1 / 4$ (assuming unrelated, non-inbred parents).
- Kinship coefficients useful in studying evolution of social (especially "altruistic") traits.
- In 1964, W. D. Hamilton proposed a rule-of-thumb to determine whether a rare allele will be favored by selection:
- A rare mutation which affects the fitness of its carrier and others will spread if $b r>c$ where
$b=$ "benefit" $=$ increase in fitness to recipients of action
$c=$ "cost" $=$ loss in fitness to actor
$r=$ "degree of relatedness".
- can use above rules to find $r: \quad r=2 F_{A B}$
- Another view of f_{j} :
- f_{f} is the proportion by which heterozygosity is reduced relative to a random mating group with the same allele frequencies.
- If $f_{f}=0$, the population is in Hardy-Weinberg proportions.
- If $f_{j}=1$, all individuals are homozygous.
- In general: Het $_{f j}=\left(1-f_{j}\right)$ Het $_{0}$ where $\operatorname{Het}_{0}=2 p(1-p)=2 p q$
- Consider, e.g., the Wahlund effect:
- Overall frequencies of A and a are \bar{p} and \bar{q}.
- If individuals from all subpopulations mate at random, expect to find $2 \bar{p} \bar{q}$ heterozygotes.
- Would actually observe $2 \bar{p} \bar{q}-2 \operatorname{Var}(p)$ heterozygotes.
- Thus, in this case $2 \bar{p} \bar{q}-2 \operatorname{Var}(p)=(1-f) 2 \bar{p} \bar{q}$.
- In order for this to be true, $f=\operatorname{Var}(p) / \bar{p} \bar{q} \quad$. [Suggested exercise: show this.]
- Note: $f \neq 0$ even though there is no deficit of heterozygotes within subpopulations and no obvious "inbreeding"!

