Introduction to F (or G) Statistics

READING: Nielsen & Slatkin pp. 60-63

- -F and G statistics are used to
 - describe levels of genetic diversity that occur within and between subpopulations
 - estimate levels of gene flow
- -F and G stats are often called **diversity Indices** since they are based on <u>actual</u>, <u>potential</u>, and/or *virtual* heterozygosities
- Imagine a collection of subpopulations
 - Let $p_{s,j}$ = frequency of allele A_j in subpopulation s. j = 1, ..., k (i.e., there are k alleles) H_s = observed frequency of heterozygotes in subpopulation s;
 - Define the following
 - (1) $H_I = avg(H_s) = average$ frequency of heterozygotes over subpopulations.
 - (2) $H_{s,s}$ = Expected frequency of "heterozygotes" in subpopulation s assuming random union of gametes

$$=1-\sum_{i=1}^{k}p_{j,s}^{2}$$

- (3) $\overline{H}_{S} = \operatorname{avg}(H_{S,s}) = 1 \sum_{j=1}^{k} \overline{p_{j}^{2}}$ where $\overline{p_{j}^{2}} = \operatorname{avg}(p_{j,s}^{2}) = \text{Average frequency of homozygotes (of any kind)}$ expected under R.U.G.
- (4) H_T = expected frequency of heterozygotes if entire population were to mate at random

$$=1-\sum_{j=1}^{k}(\overline{p}_{j})^{2}$$
 where $\overline{p}_{j}=\underset{s}{\operatorname{avg}}(p_{j,s})$.

Observation 1: \overline{H}_S and H_T can be computed for haploids and polyploids, in which case they represent *virtual* (instead of actual) expected heterozygosities.

Observation 2: With two alleles, $H_{s,s} = 2p_sq_s$ and $H_T = 2\bar{p}\bar{q}$

Comment: When *estimating* these diversity indices, these formulae are not statistically optimal since they don't account for sampling error.

– Now, let's define the F statistics (F_{IS}, F_{ST}, F_{IT}) themselves...

(1)
$$F_{IS} = \frac{\overline{H}_S - H_I}{\overline{H}_S}$$

= reduction in heterozygosity due to nonrandom mating between relatives within subpopulations

$$(2) F_{ST} = \frac{H_T - \overline{H}_S}{H_T}$$

= reduction in heterozygosity due to population subdivision (the Wahlund effect, as we'll see)

$$(3) \quad F_{IT} = \frac{H_T - H_I}{H_T}$$

= reduction in heterozygosity due to nonrandom mating between relatives within subpopulations *and* population subdivision (again, Wahlund effect)

- "Reduction in heterozygosity" ≡ "Inbreeding"
- ullet Only F_{ST} can be computed for non-diploids
- When there are > 2 alleles, F_{ST} is called G_{ST} .
- \bullet Again, different formulae are used in practice to actually *estimate F* statistics

EXAMPLE: "Wahlund Effect"

- ullet Moral: F_{ST} measures reduction in heterozygosity due to population subdivision
- Recall:
 - we have a collection of infinitely-sized subpopulations
 - two alleles, A and a with frequencies $p_{1,s}$ (= "p) and $p_{2,s}$ (= "q") in subpopulation s
 - within subpopulations, there is random mating
- Then, H_I = the average <u>observed</u> frequency of heterozygotes in subpopulation $s = \underset{s}{\operatorname{avg}} \left(2p_{1,s}p_{2,s} \right) = "2\overline{p}\overline{q} 2\operatorname{Var}(p)"$ (as we saw several weeks ago) = $2\overline{p}_1\overline{p}_2 2\operatorname{Var}(p_1)$ (using the new lingo)
- $H_{S,s}$ = expected freq. of hets. under R.U.G = $2p_{1,s}p_{2,s}$

"Coarse" Notes Population Genetics

•
$$\overline{H}_S = \underset{s}{\operatorname{avg}}(H_{S,s}) = \underset{s}{\operatorname{avg}}(2p_{1,s}p_{2,s}) = 2\overline{p}_1\overline{p}_2 - 2\operatorname{var}(p_1) = H_I!$$

• Finally, $H_T = 2 \bar{p}_1 \bar{p}_2$

• So,
$$F_{IS} = \frac{\overline{H}_S - H_I}{\overline{H}_S} = \frac{\left[2\overline{p}_1\overline{p}_2 - 2\operatorname{var}(p_1)\right] - \left[2\overline{p}_1\overline{p}_2 - 2\operatorname{var}(p_1)\right]}{2\overline{p}_1\overline{p}_2 - 2\operatorname{var}(p_1)} = 0.$$

$$F_{ST} = \frac{\left[2\overline{p}_1\overline{p}_2\right] - \left[2\overline{p}_1\overline{p}_2 - 2\operatorname{var}(p_1)\right]}{2\overline{p}_1\overline{p}_2} = \frac{\operatorname{var}(p_1)}{\overline{p}_1\overline{p}_2}.$$
Also,
$$F_{IT} = \frac{2\overline{p}_1\overline{p}_2 - \left[2\overline{p}_1\overline{p}_2 - 2\operatorname{var}(p_1)\right]}{2\overline{p}_1\overline{p}_2} = \frac{\operatorname{var}(p_1)}{\overline{p}_1\overline{p}_2} = F_{ST}$$

– Conclusions:

- All inbreeding is due to population subdivision, none due to nonrandom mating between relatives; (i.e., $F_{IT} = F_{ST}$)
- F_{ST} is the inbreeding coefficient, f, we computed previously for the Wahlund effect.
- Typical values of F_{ST}