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FINITE POPULATION SIZE: GENETIC DRIFT  
 
READING: Nielsen & Slatkin pp. 21-27 
 
 
– Will now consider in detail the effects of relaxing the assumption of infinite-population size. 
 
– Start with an extreme case:  a population of size N = 1  (an 

annual, self-fertilizing diploid plant). 
 
• The sequence of events shown at right could occur at a 

particular locus: 
 

• Notice: 
 
(1) Allele copies in individuals from generation 2 on are 

both descended from the same ancestral allele,   
(i.e., they are IBD) 

 
(2) If  were an A allele, and  an a allele, then the 

frequency of A changes from 1/2 to 1. 
 

• Will see that these features are true of any finite sized 
population: 

 
(1) The level of inbreeding (homozygosity) increases. 

– eventually, all alleles will have descended from a 
single copy in an ancestor. 

 

 

 
(2) Allele frequencies will change due to randomness of meiosis. 

– eventually, the entire population will be homozygous. 
– This process of evolutionary change is called “random genetic drift.” 
 

• Inbreeding and random genetic drift are two important consequences of finite population 
size. 
– We already discussed another when considering mutation. 

 
– To study consequences in more detail, it will help to study the following thought experiment: 
 

• Consider a hermaphroditic population of size N with 2N gene copies at a locus: 

 
 
• Each individual contributes a large (but equal) number of eggs and sperm to a gamete pool. 
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• N  offspring are formed by drawing 1 egg and 1 sperm from pool at random. 
 
• NOTE:  Since 2N different allele copies can contribute to the gamete pool, the probability 

that a particular gene copy is drawn is . 
– Given that, the probability that the same allele copy is chosen again is still   due 

to the large & equal number of gametes shed by each individual. 
 

 
• Inbreeding Due to Finite Population Size 

 
– Consider how the inbreeding coefficient, , changes in the population from generation 

 to generation t. 
 
– Fact:  Because each generation is formed by random mating between all N individuals 

(including selfing), the inbreeding and kinship coefficients are the identical. 
 
– Each offspring is formed by randomly choosing 2 alleles from the parent population, 

so: 
 

(a) with probability , the same allele copy is chosen twice  
• since the same allele is being copied, the inbreeding coefficient = 1. 

 
(b) with probability, , two different parental genes are chosen 

• these genes are IBD with probability = . 
 

– Putting these together:  
 

– If  = 0, what is ? 
 

• Consider  = Prob. of non-identity of alleles 
• Then . 
• If , then , ,...,  or

    1 as t ® ¥. 

– i.e., Alleles at each locus will eventually be IBD with probability 1.  
 

•  The rate of approach to complete inbreeding (f = 1) is roughly  inversely 
proportional to population size. 

 
– E.g., for 50% of the population to become inbred, it takes » 14,400 generations 

for populations of size N = 10,000, and » 138 generations for a population of 
size N = 100. 

 



 “Coarse” Notes  Population Genetics 

 II-12 

• Genetic Drift Due to Finite Population Size 
 

– Two views of genetic drift: 
 

(a) Within a single population. 
• random changes in allele frequencies occur until p = 0 or 1 is reached; no further 

change occurs after that. 
 
(b) Across replicate populations. 

• Replicate population allele frequencies diverge through time. 
 

– Relation between the two views:   
 

• overall statistical properties across replicate populations are interpreted as 
probabilities of particular outcomes within a single population, and vice versa. 

 
• The above idealized model was used by Wright and Fisher to study drift. 
 

–Will refer to it as the “Wright-Fisher model.” 
 
– Specifically assume 

• Population of size N with 2N gene copies per locus 
• Suppose i of these are A alleles  ( ) 
 

– Q: How many copies of A will there be in the next generation? 
A: It depends,  unless i = 0 or 2N 
 

– Better Question:  What is   ?   
 

• Since each gene copy is drawn independently, this question is mathematically 
equivalent to the probability of getting j heads in 2N tosses of a coin whose 
probability of heads in any single toss is . 

 
• These probabilities are given by the binomial distribution: 

  where   and  

 
– From an “across populations” view, imagine replicate populations each of size 

N and with i copies of the A allele, then Pij = fraction of all populations with j 
copies of the A allele in the next generation. 

 
 

– Now let's use the Wright-Fisher model with these probabilities to study some properties 
of genetic drift in finite populations. 
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–  Q:  What is the average frequency of A  over all replicate populations? 
A:  Binomial expectation:    or, in terms of frequencies, 

. 
 

• Punch Line:  No Change is expected.  In fact, . 
 

– Q:  How much do allele frequencies vary across the (initially identical) replicate 
pops? 
A:   Binomial variance:     so that   . 
 
• Can show that       as  t  ¥. 
 
• Term in brackets should remind you of :  
 

• In fact:   

 
– This suggests way to estimate f in an extent population. 
– Remark:   above is exactly what we found for the Wahlund Effect!?! 
 

– Three Quantitative Conclusions: 
 

(1)  PROBABILITY OF FIXATION:   
 

Q: If Freq(A) = p initially, what is the probability A will become fixed or lost? 
 

– Answer 1 (replicate populations) Know: 
• All populations will eventually become fixed (i.e., p∞ = 0 or p∞ = 1). 
• Since the average frequency of A never changes, p populations must be 

fixed for A  and (1 – p) will have lost A. 
\ Probability A is fixed = p, lost = 1 – p. 
 

– Answer 2  
• In any one population, all alleles will eventually be descended from a 

single gene copy. 
• The chance that the lucky gene copy is an A  allele is just the frequency 

of A in the original population 
\ Probability A is fixed = p, lost = 1 – p 
 

• Note:  This conclusion is independent of the population size! 
 
 

(2) DECLINE IN HETEROZYGOSITY 
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Q: What happens to the average frequency of heterozygotes? 
 

– Let  
– Can show  
 

• Variation is lost, but very slowly if N is large. 
 

– e.g., if N = 106,  0.00005% of current heterozygosity is lost per generation. 
 
– Mendelian inheritance is thus a very powerful force for maintaining genetic 

variation in "large" populations (Flip side:  drift is weak force in depleting 
genetic variation in large populations). 

 
 

• Decline in expected heterozygosity does not imply heterozygote deficiencies 
within  replicate subpopulations (as with the Wahlund effect). 
 
– Randomly mating subpopulations are in approximate H-W proportions. 
 
– The overall decline in heterozygosity is due to those subpopulations that are 

becoming fixed for different alleles. 
 

(3) TIME TO FIXATION 
 
Q: How many generations will it take for drift to cause fixation of either A or a? 
 

–  On average, it takes . 
 

– Note that  depends on p and N 
•   
• e.g., if p = 0.5 initially,  ≈ 2.7N generations. 
• This may be a long time for large populations. 

 
 

 
• Population Bottlenecks 
 

– During population crashes or colonization events, a population may experience short 
periods with low numbers. 

 
• Numerous biologists have emphasized the importance of such "founder-flush" 

events in evolution. 
 

– From a population genetics standpoint want to ask:  What are the effects of drift during 
"population bottlenecks". 
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 • A:  Depends on   

(a) how small a population becomes. 
(b) how long it remains small. 

 
– Will examine the issue from two perspectives. 
 

(1) Effect of bottlenecks on heterozygosity 
 

• Consider a population bottleneck of 1 generation to N = 2. 
– Assume the population recovers to large size in generation 2. 

• Know that  or !(#$%&'#$|#$)
#$

= 	−1/2𝑁 
 

– In this case, only 25% of the heterozygosity is expected to be lost 
 

• Conclude:  Appreciable amounts of heterozygosity will be lost due to drift only 
if population is small for an appreciable amount of time. 

 
(2) Effect of bottleneck on the number of alleles 
 

• Expect common alleles to persist, rare ones to be lost 
 
• Probability that an allele of frequency p is lost during a 1-generation bottleneck 

= . 
 
• Consider the following probabilities that an allele with frequency p will be lost 

during a 1-generation bottleneck of size N: 
 

 N 
 2 10 100 10,000 
p     

0.5 0.06    
0.1 0.66 0.12   
0.01 0.96 0.82 0.13  

0.0001 0.9996 0.998 0.98 0.14 
 
• Notice that rare alleles are likely to be lost, however, their loss has little effect 

on heterozygosity. 
 
• The time needed to recover previous heterozygosity and # of alleles depends on 

what mechanism restores variation. 
 

– E.g., with mutation this would take a long time to accomplish. 
 
• Conclude 



 “Coarse” Notes  Population Genetics 

 II-16 

 
1) Common alleles are unlikely to be lost during a bottleneck 
 
2) Rare alleles are highly prone to being lost. 
 
 

– Implications: 
 
• If evolution relies mainly on common alleles, a few generations of small 

population size won't have much effect one population's long-term adaptive 
potential. 

 
• If, in contrast, evolution relies on rare alleles, then bottlenecks erode the ability 

of populations to adapt. 
 


