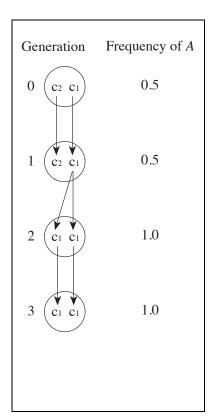
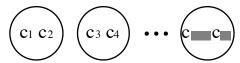
FINITE POPULATION SIZE: GENETIC DRIFT

READING: Nielsen & Slatkin pp. 21-27

- Will now consider in detail the effects of relaxing the assumption of infinite-population size.
- Start with an extreme case: a population of size N = 1 (an annual, self-fertilizing diploid plant).
 - The sequence of events shown at right *could* occur at a particular locus:
 - Notice:
 - (1) Allele copies in individuals from generation 2 on are both descended from the same ancestral allele, \bar{c}_1 (i.e., they are IBD)
 - (2) If c_1 were an A allele, and c_2 an a allele, then the frequency of A changes from 1/2 to 1.
 - Will see that these features are true of *any* finite sized population:
 - (1) The level of inbreeding (homozygosity) increases.
 - eventually, all alleles will have descended from a single copy in an ancestor.



- (2) Allele frequencies will change due to randomness of meiosis.
 - eventually, the entire population will be homozygous.
 - This process of evolutionary change is called "random genetic drift."
- Inbreeding and random genetic drift are two important consequences of finite population size.
 - We already discussed another when considering mutation.
- To study consequences in more detail, it will help to study the following thought experiment:
 - Consider a hermaphroditic population of size N with 2N gene copies at a locus:



• Each individual contributes a large (but equal) number of eggs and sperm to a gamete pool.

- N offspring are formed by drawing 1 egg and 1 sperm from pool at random.
- NOTE: Since 2N different allele copies can contribute to the gamete pool, the probability that a particular gene copy is drawn is 1/2N.
 - Given that, the probability that the *same* allele copy is chosen again is <u>still</u> 1/2N due to the large & equal number of gametes shed by each individual.

• Inbreeding Due to Finite Population Size

- Consider how the inbreeding coefficient, f_t , changes in the population from generation t-1 to generation t.
- -Fact: Because each generation is formed by random mating between all N individuals (including selfing), the inbreeding and kinship coefficients are the identical.
- Each offspring is formed by randomly choosing 2 alleles from the parent population,
 so:
 - (a) with probability 1/2N, the same allele copy is chosen twice
 - since the same allele is being copied, the inbreeding coefficient = 1.
 - (b) with probability, 1 1/2N, two different parental genes are chosen
 - these genes are IBD with probability = f_{-1} .
- Putting these together: $f_t = (1/2N) \cdot 1 + (1-1/2N)f_{t-1}$
- If $f_0 = 0$, what is f_1 ?
 - Consider $h_{i} \equiv 1 f_{i} = \text{Prob. of } \underline{non}$ -identity of alleles
 - Then $h_i = (1/2N) \cdot 0 + (1-1/2N)h_{i-1} = (1-1/2N)h_{i-1}$.
 - If $h_0 = 1$, then $h_1 = (1 1/2N)$, $h_2 = (1 1/2N)^2$,..., $h_t = (1 1/2N)^t$ or $f_t = 1 h_t = 1 \left(1 \frac{1}{2N}\right)^t \rightarrow 1$ as $t \rightarrow \infty$.
 - -i.e., Alleles at each locus will eventually be IBD with probability 1.
 - The rate of approach to complete inbreeding (f = 1) is roughly inversely proportional to population size.
 - E.g., for 50% of the population to become inbred, it takes $\approx 14,400$ generations for populations of size N = 10,000, and ≈ 138 generations for a population of size N = 100.

• Genetic Drift Due to Finite Population Size

- Two views of genetic drift:
 - (a) Within a single population.
 - random changes in allele frequencies occur until p = 0 or 1 is reached; no further change occurs after that.
 - (b) Across replicate populations.
 - Replicate population allele frequencies diverge through time.
- Relation between the two views:
 - overall statistical properties across replicate populations are interpreted as probabilities of particular outcomes within a single population, and vice versa.
- The above idealized model was used by Wright and Fisher to study drift.
 - -Will refer to it as the "Wright-Fisher model."
 - Specifically assume
 - Population of size N with 2N gene copies per locus
 - Suppose *i* of these are *A* alleles (p = i/2N)
 - Q: How many copies of A will there be in the next generation?
 A: It depends, unless i = 0 or 2N
 - Better Question: What is $P_{ij} = \Pr(N_A^{(t+1)} = j | N_A^{(t)} = i)$?
 - Since each gene copy is drawn independently, this question is mathematically equivalent to the probability of getting j heads in 2N tosses of a coin whose probability of heads in any single toss is ||2N|.
 - These probabilities are given by the **binomial distribution**:

$$P_{ij} = {2N \choose j} p^{j} (1-p)^{2N-j} \qquad \text{where} \qquad p = i/2N \quad \text{and} \begin{pmatrix} 2N \\ j \end{pmatrix} = \frac{2N!}{j!(2N-j)!}$$

- From an "across populations" view, imagine replicate populations each of size N and with i copies of the A allele, then P_{ij} = fraction of all populations with j copies of the A allele in the next generation.
- Now let's use the Wright-Fisher model with these probabilities to study some properties
 of genetic drift in finite populations.

- Q: What is the average frequency of A over all replicate populations?
 - A: Binomial expectation: E[j] = 2Np = 2N(i/2N) = i or, in terms of frequencies, $\overline{p}_1 = p_0 = i/2N$.
 - Punch Line: No Change is expected. In fact, $\overline{p}_i = p_0$.
- Q: How much do allele frequencies vary across the (initially identical) replicate pops?

A: Binomial variance: $Var(j) = 2Np_0(1-p_0)$ so that $Var(p_0) = p_0(1-p_0)/2N$.

- Can show that $Var(p_t) = [1 (1 1/2N)^t] p_0 (1 p_0) \rightarrow p_0 (1 p_0)$ as $t \rightarrow \infty$.
- Term in brackets should remind you of f_t : $f_t = 1 (1 1/2N)^t$

• In fact:
$$f_t = \frac{\operatorname{Var}(p_t)}{p_0(1-p_0)} = \frac{\operatorname{Var}(p_t)}{\overline{p}_t(1-\overline{p}_t)}$$

- This suggests way to estimate f in an extent population.
- Remark: f above is exactly what we found for the Wahlund Effect!?!

- Three Quantitative Conclusions:

(1) <u>PROBABILITY OF FIXATION</u>:

Q: If Freq(A) = p initially, what is the probability A will become fixed or lost?

- Answer 1 (replicate populations) Know:
 - All populations will eventually become fixed (i.e., $p_{\infty} = 0$ or $p_{\infty} = 1$).
 - Since the *average* frequency of A never changes, p populations must be fixed for A and (1 p) will have lost A.
 - \therefore Probability A is fixed = p, lost = 1 p.

- Answer 2

- In any one population, all alleles will eventually be descended from a single gene copy.
- The chance that the lucky gene copy is an A allele is just the frequency of A in the original population
- \therefore Probability *A* is fixed = *p*, lost = 1 p
- Note: This conclusion is independent of the population size!

(2) DECLINE IN HETEROZYGOSITY

Q: What happens to the average frequency of heterozygotes?

- Let
$$H_t = 2p_t(1-p_t)$$

- Can show $E(H_{t-1}) = (1-1/2N)H_t$

- Variation is lost, but very slowly if *N* is large.
 - e.g., if $N = 10^6$, 0.00005% of current heterozygosity is lost per generation.
 - Mendelian inheritance is thus a very powerful force for maintaining genetic variation in "large" populations (Flip side: drift is weak force in depleting genetic variation in large populations).
- Decline in expected heterozygosity does <u>not</u> imply heterozygote deficiencies within replicate subpopulations (as with the Wahlund effect).
 - Randomly mating subpopulations are in approximate H-W proportions.
 - The overall decline in heterozygosity is due to those subpopulations that are becoming fixed for different alleles.

(3) TIME TO FIXATION

- Q: How many generations will it take for drift to cause fixation of either A or a?
 - On average, it takes $\bar{t}(p) = -4[(1-p)\ln(1-p) + p\ln p]N$ generations.
 - Note that $\bar{i}(p)$ depends on p and N
 - ī(p) ∝ N
 - e.g., if p = 0.5 initially, $\overline{I}(0.5) \approx 2.7N$ generations.
 - This may be a long time for large populations.

• Population Bottlenecks

- During population crashes or colonization events, a population may experience short periods with low numbers.
 - Numerous biologists have emphasized the importance of such "founder-flush" events in evolution.
- From a population genetics standpoint want to ask: What are the effects of drift during "population bottlenecks".

- A: Depends on
 - (a) how *small* a population becomes.
 - (b) how *long* it remains small.
- Will examine the issue from two perspectives.
 - (1) Effect of bottlenecks on heterozygosity
 - Consider a population bottleneck of 1 generation to N = 2.
 - Assume the population recovers to large size in generation 2.

• Know that
$$E(H_{t+1}) = (1 - 1/2N)H_t$$
 or $\frac{E(H_{t+1} - H_t|H_t)}{H_t} = -1/2N$

- In this case, only 25% of the heterozygosity is expected to be lost
- <u>Conclude</u>: Appreciable amounts of heterozygosity will be lost due to drift only if population is small for an appreciable amount of time.
- (2) Effect of bottleneck on the number of alleles
 - Expect common alleles to persist, rare ones to be lost
 - Probability that an allele of frequency p is <u>lost</u> during a 1-generation bottleneck $= P_0 = (1 p)^{2N}$.
 - Consider the following probabilities that an allele with frequency *p* will be lost during a 1-generation bottleneck of size *N*:

	N			
	2	10	100	10,000
p				
0.5	0.06	9.5×10^{-7}	6.2×10^{-61}	< 10 ⁻⁹⁹⁹
0.1	0.66	0.12	7.1×10^{-10}	7.1×10^{-916}
0.01	0.96	0.82	0.13	5.1×10^{-88}
0.0001	0.9996	0.998	0.98	0.14

- Notice that rare alleles are likely to be lost, however, their loss has little effect on heterozygosity.
- The time needed to recover previous heterozygosity and # of alleles depends on what mechanism restores variation.
 - E.g., with mutation this would take a <u>long</u> time to accomplish.
- Conclude

"Coarse" Notes Population Genetics

- 1) Common alleles are unlikely to be lost during a bottleneck
- 2) Rare alleles are highly prone to being lost.

- Implications:

- If evolution relies mainly on <u>common alleles</u>, a few generations of small population size won't have much effect one population's long-term adaptive potential.
- If, in contrast, evolution relies on <u>rare alleles</u>, then bottlenecks erode the ability of populations to adapt.