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THE COALESCENT 
 

 
INTRODUCTION TO THE COALESCENT  
 
READING: Nielsen & Slatkin pp. 35-57 

 
 
– Often want to use patterns of genetic variability to estimate parameters such as mutation 

and migration rates. 
 
– e.g., Under infinite-alleles model saw that ˆ H =

4Nu
1+ 4Nu

=
θ

1 +θ
, where ˆ H  is the expected 

equilibrium heterozygosity and θ = 4Nu . 
 

• estimate θ  by replacing ˆ H  with sample heterozygosity (Hobserved) and solving equation 
for θ :  θestimated =

Hobserved

1− Hobserved

 

 
– This illustrates a prospective approach, since estimate is based on a forward-looking model 
 

• Hobserved is also assumed representative of entire population’s true heterozygosity 
 
 
– Alternatively, can develop estimates based on models that look backwards in time (i.e., are 

retrospective) and focus entirely on the set of samples alleles (rather than entire 
population) 
 
• Called coalescent approaches. 
 

– Main assumption behind coalescent:  all alleles at a locus in a sample can be traced back to 
a single ancestral allele. 

 



“Coarse” Notes  Population Genetics 

II-24 

– The coalescent = lineage (genealogy) of sampled alleles traced back to their common 
ancestor. 

 
 

• Tk = amount of time there are k distinct lineages. 
 

– each Tk  is an independent random variable 
 

– Are interested in Ttot, the total time in all branches of the genealogy until the entire set of 
alleles coalesces  (i.e., can be traced back to a single common ancestor allele). 

 
• For above example, Ttot = 4T4 + 3T3 +2T2 
 
• Since the Tk’s are random variables, so is Ttot 
 

– If u = mutation rate/generation, then  E[different alleles in sample] = E[# mutations in 
genalogy from the common ancestor] = uE[Ttot] 

 
 
– Coalescent approach often used to estimate 

€ 

θ = 4Nu  based on the infinite-sites model. 
 
• assumes each allele is an infinitely long DNA or polypeptide sequence 
 
• every mutation occurs at a different site 
 

– Note:  infinite-sites model like infinite-alleles model except in IAM, don’t know 
how different the alleles are. 

 
• Will see that S = number of segregating sites (i.e., variable sites) can be used to estimate 

€ 

θ  since E[S] = uE[Ttot]: 
 

• In fact, will show that E[Ttot] = 
  

€ 
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– So E[S] = 

€ 

u 4N 1
i −1i= 2

n

∑
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–Suggests: 

€ 

θestimated =
Sobserved

1
i −1i= 2

n

∑
 

 
• Logic behind formula for E[Ttot] = expected time to coalescence for a sample of n 

alleles: 
 

– Consider the probability of “no coalescence” in previous generation: 
 

* 1st allele’s ancestor in previous generation is one of 2N possible alleles 

* 2nd allele has different ancestor in previous generation with probability 

€ 

1− 1
2N

 

* 3rd allele has different ancestor from first two alleles with probability 

€ 

1− 2
2N

 

  

€ 

 
* nth allele has different ancestor from first n–1 alleles with probability 

€ 

1− n −1
2N

 

 
– So… P(no coalescence in previous generation) = P(alleles have n distinct ancestors 

in previous generation) = 
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– Finally: P(at least one coalescence in previous generation) = 1 – P(n distinct 

ancestors) = 
  

€ 

1
2N

+
2
2N

+
n −1
2N

=
1+ 2 + n −1( )

2N
=
n n −1( ) 2
2N

=
n n −1( )
4N

 

 
– Implies time to first coalescence in a sample of n alleles, Tn, is “geometrically 

distributed”: 

* Geometric distribution is well studied.  E.g., know that 

€ 

E Tn[ ] =
4N

n n −1( )
. 

* By similar argument: 

€ 

E Ti[ ] =
4N
i i −1( )

. 

 
– Know   

€ 

Ttot = nTn + n −1( )Tn−1 +2T2  so 

  

€ 

E Ttot[ ] = iE Ti[ ]
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– Coalescence-based derivation of equilibrium homozygosity, 

€ 

ˆ f  under IAM: 
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• Consider P(two alleles not IBD) = 1 – 

€ 

ˆ f  
 
• Two alleles will be IBD if they coalesce before a mutation occurs on either lineage. 
 

– since P(two gene coalesce) = 1/2N per generation and P(mutation) = 2u per 
generation 

 

– P(IBD) = 

€ 

1 2N
1 2N + 2u

=
1

1+ 4Nu
=

1
1+ θ

. 

 
– Same result as before, but coalescent approach far easier! 
 

– Example: (Aguadé et al. 1989) 
 

• yellow-achaete-scute region of D. melanogaster. 
 
• examined n = 64 chromosomes, found 9 polymorphic sites out of 2112 nucleotide sites 

• 

€ 

θestimated entire region( ) =
9

i −1( )
i= 2

64

∑
=1.9  

• Implies about 3 “effective alleles” segregating 
 
• 

€ 

θ per site( ) = θ region( ) 2112 = 9 ×10-4  per site. 
 
 

– Time to the most recent common ancestor of a sample of size n, TMRCA 

 

• By definition, T
MRCA

=T
n
+T

n−1
++T

2
 

 

• E T
MRCA( )= E T

i( )
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• Since E T

2( )= 4N / (2)(2−1)=2N 'generations  and E T
MRCA( )< 4N &generations , at least half of 

the time to coalescence for the sample involves just 2 alleles! 
 
 

– The coalescent and phylogenetics: “Lineage Sorting” 
 
• Coalescent is a history of genes within a population (“gene tree”) 
• Phylogeny is a history of relationships among species (“species tree”) 
 
• Q: When do gene trees reflect species relationships? 
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– “Lineage sorting”: problem of gene with coalescence time further in past than 

speciation 
• Coalescence theory can help determine if lineage sorting is a problem 
 
• Can show P T

MRCA
> t %generations( )≤3e−t/2Ne  

 
• Lineage sorting occurs when T

MRCA
>T

speciation
, so P lineage'sorting( )≤3e−Tspeciation/2Ne  

 
• If 3e−Tspeciation/2Ne  is small, lineage sorting is not likely a problem 
 
 

• Effective Population Size 
 

– The default model for studying and understanding the effects of finite population size is 
the Wright-Fisher model. 

 
– How do we study drift in organisms with other life cycles and population structures? 
 

• Convenient way is to determine what population size in the Wright-Fisher model 
would produce the same rate of inbreeding and drift as the system of interest. 

 
• This effective population size, Ne, will often be different from the census size of 

the population, N. 
 

– Examples: 
 

(1) No Selfing 
 

• If no selfing were allowed in the basic Wright-Fisher model, the inbreeding and 
drift in a population of census size N would proceed as if it were a Wright-
Fisher model with size . 

 
(2) Two Sexes 
 

• Basic model assumes individuals are hermaphrodites (monoecious).  What if a 
population has two sexes with Nm breeding males and Nf breeding females? 

 

• Turns out  = 2 ´ (harmonic average of  Nm and Nf). 

 
•  If Nm = Nf  = N/2, then Ne = N 
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– In all other cases, Ne is closer the number of the less numerous sex. 
 
– Consider:      
    1  99  4 
    5  95  19 
    50  50  100 
    90  10  36 
 

 
 
(3) Population Size Fluctuates 

 

•   =  harmonic mean population size through time. 

 
• Ne  is never greater (and often is much smaller) than the arithmetic average size:  

 . 
 
 

(4) Variance in Fitness With Non-genetic Basis  
 
•   where Vn = variance in offspring number. 

 
• This Ne can be greater than N (e.g., if all individuals contribute equally), but 

generally is less than N. 
 

(5) Overlapping Generations 
• Ne  generally less than N 
 
 

– Punch Line:  Ne is generally smaller than census size and can be much smaller.   
 

 


