# THE COALESCENT

## INTRODUCTION TO THE COALESCENT

READING: Nielsen & Slatkin pp. 35-57

- Often want to use patterns of genetic variability to estimate parameters such as mutation and migration rates.
- e.g., Under infinite-alleles model saw that  $\hat{H} = \frac{4Nu}{1+4Nu} = \frac{\theta}{1+\theta}$ , where  $\hat{H}$  is the expected equilibrium heterozygosity and  $\theta = 4Nu$ .
  - estimate  $\theta$  by replacing  $\hat{H}$  with sample heterozygosity ( $H_{\text{observed}}$ ) and solving equation for  $\theta$ :  $\theta_{\text{estimated}} = \frac{H_{\text{observed}}}{1 - H_{\text{observed}}}$
- This illustrates a **prospective** approach, since estimate is based on a forward-looking model
  - $\bullet$   $H_{\rm observed}$  is also assumed representative of entire population's true heterozygosity
- Alternatively, can develop estimates based on models that look backwards in time (i.e., are retrospective) and focus entirely on the set of samples alleles (rather than entire population)
  - Called **coalescent** approaches.
- Main assumption behind coalescent: all alleles at a locus in a sample can be traced back to a single ancestral allele.

- The coalescent = lineage (genealogy) of sampled alleles traced back to their common ancestor.



•  $T_k$  = amount of time there are k distinct lineages.

- each  $T_k$  is an independent random variable

- Are interested in  $T_{tot}$ , the total time in all branches of the genealogy until the entire set of alleles coalesces (i.e., can be traced back to a single common ancestor allele).
  - For above example,  $T_{tot} = 4T_4 + 3T_3 + 2T_2$
  - Since the  $T_k$ 's are random variables, so is  $T_{tot}$
- If u = mutation rate/generation, then E[different alleles in sample] = E[# mutations in genalogy from the common ancestor] =  $uE[T_{tot}]$
- Coalescent approach often used to estimate  $\theta = 4Nu$  based on the **infinite-sites model**.
  - assumes each allele is an infinitely long DNA or polypeptide sequence
  - every mutation occurs at a different site
    - Note: infinite-sites model like infinite-alleles model except in IAM, don't know *how* different the alleles are.
  - Will see that S = number of segregating sites (i.e., variable sites) can be used to estimate  $\theta$  since  $E[S] = uE[T_{tot}]$ :
  - In fact, will show that  $E[T_{tot}] = 4N \sum_{i=2}^{n} \frac{1}{i-1} = 4N \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-1}\right)$  where n = number of alleles in sample.

• Logic behind formula for  $E[T_{tot}]$  = expected time to coalescence for a sample of *n* alleles:

- Consider the probability of "no coalescence" in previous generation:

\* 1<sup>st</sup> allele's ancestor in previous generation is one of 2N possible alleles \* 2<sup>nd</sup> allele has *different* ancestor in previous generation with probability  $1 - \frac{1}{2N}$ \* 3<sup>rd</sup> allele has different ancestor from first two alleles with probability  $1 - \frac{2}{2N}$ : \* ath allele has different ancestor from first on a labeled with probability  $1 - \frac{2}{2N}$ 

\* *n*th allele has different ancestor from first *n*-1 alleles with probability  $1 - \frac{n-1}{2N}$ 

- So... P(no coalescence in previous generation) = P(alleles have *n* distinct ancestors in previous generation) =  $\left(1 - \frac{1}{2N}\right)\left(1 - \frac{2}{2N}\right)\cdots\left(1 - \frac{n-1}{2N}\right) \approx 1 - \frac{1}{2N} - \frac{2}{2N} - \cdots - \frac{n-1}{2N}$ 

- Finally: P(at least one coalescence in previous generation) = 1 - P(n distinct ancestors) =  $\frac{1}{2N} + \frac{2}{2N} + \dots + \frac{n-1}{2N} = \frac{1+2+\dots(n-1)}{2N} = \frac{n(n-1)/2}{2N} = \frac{n(n-1)}{4N}$ 

– Implies time to first coalescence in a sample of n alleles,  $T_n$ , is "geometrically distributed":

\* Geometric distribution is well studied. E.g., know that  $E[T_n] = \frac{4N}{n(n-1)}$ .

\* By similar argument: 
$$E[T_i] = \frac{4N}{i(i-1)}$$

- Know 
$$T_{\text{tot}} = nT_n + (n-1)T_{n-1} + \dots + 2T_2$$
 so  
 $E[T_{\text{tot}}] = \sum_{i=2}^n iE[T_i] = \sum_{i=2}^n \frac{4N}{i-1} = 4N\left(1 + \frac{1}{2} + \dots + \frac{1}{n-1}\right)$ 

– Coalescence-based derivation of equilibrium homozygosity,  $\hat{f}$  under IAM:

- Consider P(two alleles not IBD) =  $1 \hat{f}$
- Two alleles will be IBD if they coalesce *before* a mutation occurs on either lineage.
  - since P(two gene coalesce) = 1/2N per generation and P(mutation) = 2u per generation

$$-P(IBD) = \frac{1/2N}{1/2N + 2u} = \frac{1}{1 + 4Nu} = \frac{1}{1 + \theta}$$

- Same result as before, but coalescent approach far easier!
- Example: (Aguadé et al. 1989)
  - yellow-achaete-scute region of *D. melanogaster*.
  - examined n = 64 chromosomes, found 9 polymorphic sites out of 2112 nucleotide sites

• 
$$\theta_{\text{estimated}}(\text{entire region}) = \frac{9}{\sum_{i=2}^{64} (i-1)} = 1.9$$

- Implies about 3 "effective alleles" segregating
- $\theta(\text{per site}) = \theta(\text{region})/2112 = 9 \times 10^{-4} \text{ per site.}$
- Time to the most recent common ancestor of a sample of size  $n, T_{MRCA}$

• By definition, 
$$T_{\text{MRCA}} = T_n + T_{n-1} + \dots + T_2$$

• 
$$E(T_{MRCA}) = \sum_{i=2}^{n} E(T_i) = \sum_{i=2}^{n} \frac{4N}{i(i-1)} = 4N\left(1-\frac{1}{n}\right)$$
 generations

- Since  $E(T_2) = 4N/(2)(2-1) = 2N$  generations and  $E(T_{MRCA}) < 4N$  generations, <u>at least</u> half of the time to coalescence for the sample involves just 2 alleles!
- The coalescent and phylogenetics: "Lineage Sorting"
  - Coalescent is a history of genes within a population ("gene tree")
  - Phylogeny is a history of relationships among species ("species tree")
  - Q: When do gene trees reflect species relationships?

- "Lineage sorting": problem of gene with coalescence time further in past than speciation
- Coalescence theory can help determine if lineage sorting is a problem
- Can show  $P(T_{MRCA} > t \text{ generations}) \le 3e^{-t/2N_e}$
- Lineage sorting occurs when  $T_{\text{MRCA}} > T_{\text{speciation}}$ , so  $P(\text{lineage sorting}) \le 3e^{-T_{\text{speciation}}/2N_e}$
- If  $3e^{-T_{\text{speciation}}/2N_e}$  is small, lineage sorting is not likely a problem

## • Effective Population Size

- The default model for studying and understanding the effects of finite population size is the Wright-Fisher model.
- How do we study drift in organisms with other life cycles and population structures?
  - Convenient way is to determine what population size in the Wright-Fisher model would produce the same rate of inbreeding and drift as the system of interest.
  - This effective population size,  $N_e$ , will often be different from the census size of the population, N.
- Examples:
  - (1) No Selfing
    - If no selfing were allowed in the basic Wright-Fisher model, the inbreeding and drift in a population of census size N would proceed as if it were a Wright-Fisher model with size  $N_e = N + \frac{1}{2}$ .
  - (2) <u>Two Sexes</u>
    - Basic model assumes individuals are hermaphrodites (monoecious). What if a population has two sexes with  $N_m$  breeding males and  $N_f$  breeding females?
    - Turns out  $N_e = \frac{4N_m N_f}{N_m + N_f} = 2 \times (\text{harmonic average of } N_m \text{ and } N_f).$
    - If  $N_m = N_f = N/2$ , then  $N_e = N$

- In all other cases,  $N_e$  is closer the number of the less numerous sex.

| – Consider: | $N_f$ | $N_m$ | $\approx N_c$ |
|-------------|-------|-------|---------------|
|             | 1     | 99    | 4             |
|             | 5     | 95    | 19            |
|             | 50    | 50    | 100           |
|             | 90    | 10    | 36            |

#### (3) Population Size Fluctuates

- $N_r = \frac{1}{\frac{1}{t}\sum_{i=1}^{t}\frac{1}{N_i}}$  = harmonic mean population size through time.
- $N_e$  is never greater (and often is much smaller) than the arithmetic average size:  $N_e \leq \frac{1}{t} \sum N_i$ .

#### (4) Variance in Fitness With Non-genetic Basis

• 
$$N_{\sigma} = \frac{4N-2}{2+V_{n}}$$
 where  $V_{n}$  = variance in offspring number.

- This *N<sub>e</sub>* can be greater than *N* (e.g., if all individuals contribute equally), but generally is less than *N*.
- (5) <u>Overlapping Generations</u> •  $N_e$  generally less than N

– **Punch Line**:  $N_e$  is generally smaller than census size and can be *much* smaller.