HOMEWORK SET \#3

Due: Thursday, November 8

1. Consider the following scenarios of one-locus selection with two alleles, A and a and selection coefficient $s=0.1$ against a. The genetic basis of fitness is given for each scenario. In each case, compute Δp, the between-generation change in the frequency of A for each of two initial frequencies: $p=0.05$ and $p=0.9$.
(a) haploid ($w_{A}=1, w_{a}=1-s$)
(b) diploid; A dominant advantageous
(c) diploid; A recessive advantageous
(d) diploid; A advantageous and partially dominant with $h=0.4$
(e) Using your results, briefly discuss how the individual and population genetic architectures of fitness affect rates of adaptive evolution.
2. Consider a locus with alleles A and a at frequencies $p=0.7$ and $q=0.3$ respectively. Assume that prior to selection (i.e., in the zygote stage) the population is in Hardy-Weinberg proportions.

- First consider "additive" fitnesses, i.e., $w_{A A}: w_{A a}: w_{a a}=1: 1-(s / 2): 1-s$.
(a) Assuming $s=0.2$, compute $P_{A A}^{*}, P_{A a}^{*}$, and $P_{a a}^{*}$, the genotype frequencies after selection but before reproduction. Carry out your calculations to 4 or 5 decimal places.
(b) Show that $P_{A A}^{*}, P_{A a}^{*}, P_{a a}^{*}$ are not in Hardy-Weinberg proportions.
- Now consider "multiplicative" fitnesses, i.e., $w_{A A}: w_{A a}: w_{a a}=1: 1-s:(1-s)^{2}$.
(c) Redo part (a) using multiplicative fitnesses.
(d) Show that the post-selection genotype frequencies $\left(P_{A A}^{*}, P_{A a}^{*}, P_{a a}^{*}\right)$ are exactly in HardyWeinberg proportions.
(e) Explain why failure to reject the Hardy-Weinberg hypothesis statistically need not imply that a population satisfies the Hardy-Weinberg conditions.
(f) Show that with multiplicative fitnesses the evolutionary rate of p is, for any s,
$\Delta p=p q \frac{s}{1-s q}$. (Note: this is identical to Δp for an advantageous allele in an asexual or haploid population with relative fitnesses $w_{A}=1 ; w_{a}=1-s$.)

3. (a) How large does the selection coefficient s need to be in order to change a dominant advantageous allele from an allele frequency of 0.5 to 0.51 in one generation?
(b) Do the same calculation for a recessive advantageous allele.
(c) Do the same calculation for a haploid advantageous allele.
(d) What does this imply about the efficiency of selection in haploids vs. diploids?
(Optional) Although this problem suggests that selection in haploids is more efficient than in diploids (Hint! Hint!), we know from problem 2 that selection in diploids can be equally efficient as haploids with multiplicative fitnesses (Triple Hint!). Are there any selection patterns in diploids that are more efficient than haploids for a given selection coefficient?
4. Hedrick, p. 362 \#1
5. Hedrick, p. 362, \#4
