SELECTION

INTRODUCTION TO SELECTION

READING: Nielsen & Slatkin pp. 129-177 (next several lectures)

• General Comments

- What is selection?
- Elements of Adaptive Evolution:
 - (1) Development
 - (2) Ecology
 - (3) Population Genetics

Asexual inheritance

- Two clones: A and a with numbers N_A , N_a
- Clone A (similarly for clone a):
 - viability = v_A
 - fecundity = f_A
 - absolute fitness = $W_A = v_A f_A$

- Next generation:
$$\begin{cases} N'_{A} = W_{A}N_{A} \\ N'_{a} = W_{a}N_{a} \end{cases}$$

- Another view: genotype frequencies

•
$$p =$$
frequency of $A = \frac{N_A}{N_A + N_a}$

- Next generation: $p = \frac{N'_A}{N'_A + N'_a} = \frac{N_A W_A}{N_A W_A + N_a W_a} = \frac{p W_A}{p W_A + q W_a}$ or $p' = \frac{W_A}{\overline{W}} p$
- What is $\overline{W} = pW_A + qW_a = pW_A + (1-p)W_a$?
 - population **mean fitness**: average of W_A and W_a , weighted by frequencies of A and a.

- Yet another view: rate of evolution

$$\Delta p = p' - p = \left(\frac{W_A}{\overline{W}}p\right) - p = \frac{W_A - \overline{W}}{\overline{W}}p = p\frac{W_A - pW_A - (1-p)W_a}{\overline{W}}$$
$$\Delta p = p(1-p)\frac{W_A - W_a}{\overline{W}} = pq\frac{W_A - W_a}{\overline{W}}$$

or

(1) Selection

(2) Genetics (inheritance)

• DIGRESSION: "Absolute vs. Relative fitness"

-Suppose W_A and W_a are both divided by 2: $\widetilde{W}_A = W_A/2$, $\widetilde{W}_a = W_a/2$

- Mean fitness is halved: $\overline{\widetilde{W}} = p\widetilde{W}_A + q\widetilde{W}_a = \frac{pW_A}{2} + \frac{qW_a}{2} = \frac{\overline{W}}{2}$.
- Rate of gene frequency change is not affected:

$$\Delta p = p(1-p)\frac{\widetilde{W}_A - \widetilde{W}_a}{\overline{\widetilde{W}}} = pq\frac{(W_A - W_a)/2}{\overline{W}/2} = pq\frac{W_A - W_a}{\overline{W}}$$

– <u>Conclude</u>: Only **ratio** of W_A and W_a contributes to gene frequency change.

- <u>Implication</u>: Only **relative fitnesses** needed to predict genotype frequency change.

- E.g., Can use W_a as a standard: $w_A = W_A/W_a$; $w_a = W_a/W_a = 1$
- NOTE: Can go from $W_A \rightarrow W_A$ but <u>not</u> $W_A \rightarrow W_A$.

- Number vs. frequency: $\underline{N}(N_A, N_a)$ vs. p

- Evolution within populations is better described by *p* than *N*.
- Only need relative fitnesses to follow *p*
 - $-\underline{But} \quad w \neq W$, so changes in N will be ignored.

• Selection Coefficients

- Can write ratio W_A : W_a as 1:1-s = w_A : w_a
 - "s" is called the <u>selection coefficient</u> of *a*.
 - *s* ranges from 1 to $-\infty$
 - Using this notation:

$$\Delta p = pq \frac{1-(1-s)}{p+q(1-s)} \quad \text{or} \ \ \Delta p = pq \frac{s}{1-sq}$$

- Selection coefficients in the real world
 - Famous Example Biston betularia (peppered moth).
 - Examples of Strong Selection:
 - DDT resistance in Drosophila, San Jose scale, *Anopholes* mosquitoes, antibiotic resistance in bacteria, pathogenesis of AIDS.
 - <u>Typical</u> selection coefficients.
 - <u>Newly arisen mutations</u> in nature.