OVER- AND UNDERDOMINANCE IN FITNESS; **STABILITY**

• Introduction

- What if an allele is favored most or least when present with its alternative?
 - Situations called, respectively, overdominance and underdominance in fitness.
- Over-/underdominance in nature
 - Overdominance: Sickle cell anemia
 - Underdominance: chromosomal rearrangements; Rh locus
- NOTE: Absence of over- or under-dominance in phenotype ⇒ Over-/underdominance in *fitness*

• Evolutionary dynamics of over- and underdominance

• Fitnesses: $\begin{array}{ccc} w_{AA} & w_{Aa} & w_{aa} \\ 1-s: & 1 & : 1-t \end{array}$

- If s, t > 0, overdominance in fitness: $w_{AA} < w_{Aa} > w_{aa}$.

- If s, t < 0, <u>underdominance</u> in fitness: $w_{AA} > w_{Aa} < w_{aa}$.

• Plugging these fitnesses into general formula $\Delta p = pq \frac{\overline{w}_A - \overline{w}_a}{\overline{w}}$ get:

$$\Delta p = pq \frac{qt - ps}{1 - p^2 s - q^2 t}$$

- Ways to study this equation:
 - Iterate equation for different values of t and s and initial p (e.g., using EXCEL).
 - Other approach: Analysis
 - Step 1: Find equilibria.
 - I.e., find values of *p* for which $\Delta p = 0$ or p' = p.
 - Three possibilities: (a) p = 0; (b) p = 1; (c) $p = \frac{t}{s+t}$

- (c) is biologically feasible $(0 \le p \le 1)$ only if t, s > 0 or t, s < 0.

• In this case, have **polymorphic** equilibrium.

• Step 2: Determine stability

• Digression: analyzing evolutionary (dynamical) systems

- Computational approaches are limited to exploring relatively small number of scenarios.
- Alternatively, can incompletely analyze an *infinite* number of scenarios: "mathematical analysis"
 - General Approach: answer the following two questions
 - (1) Q: "What are the eventual outcomes of evolution?
 - Evolution ceases if equilibrium is reached, i.e., if $\Delta p = 0 \Leftrightarrow p' = p$.
 - An allele frequency at which evolution stops is called an **equilibrium** value. • denoted \hat{p}
 - Can be more than one equilibrium value.
 - (2) Q: Are these equilibria ever approach in the course of evolution? A: Depends on **stability** of the equilibria, \hat{p} .

- Stability

- A taxonomy of equilibrium stabilities:
 - 1) Unstable equilibrium: perturbed system actively moves away
 - 2) Stable equilibrium
 - a) Neutrally stable: perturbed system neither moves away or returns
 - b) Locally stable: perturb system slightly & it returns to equilibrium
 - c) Globally stable: any perturbation returns to equilibrium

• Back to over-/underdominance...**STABILITY OF** $\hat{p} = 0, 1, \frac{t}{s+t}$

• Qualitative Approach

- Populations near "boundary" equilibria ($\hat{p} = 0, 1$):
 - driven away with overdominance
 - return with underdominance
- Populations near polymorphic equilibrium [$\hat{p} = t/(s+t)$]:
 - move towards polymorphic equilibrium with overdominance
 - move away with **under**dominance
 - NOTE: which direction depends on which side of t/(s+t) population lies initially.

Mathematical Approach

- Blow up graph of Δp near \hat{p} ;

• $\lambda = \text{slope of } \Delta p \text{ at } \hat{p} = \frac{d}{dp} (\Delta p) \Big|_{p=\hat{p}}$

- λ is called an **eigenvalue**.
- Look at frequencies starting slightly <u>above</u> \hat{p} : $p = \hat{p} + \varepsilon$:
 - $\varepsilon > 0 =$ initial distance from \hat{p}

•
$$p' = p + \Delta p \approx (\hat{p} + \varepsilon) + \lambda \varepsilon = \hat{p} + (1 + \lambda)\varepsilon$$
 or $p' - \hat{p} \approx (1 + \lambda)\varepsilon$

- Look at frequencies starting slightly <u>below</u> \hat{p} : $p = \hat{p} - \varepsilon$ ($\varepsilon > 0$):

•
$$p' = p + \Delta p \approx (\hat{p} - \varepsilon) + \lambda(-\varepsilon) = \hat{p} + (1 + \lambda)(-\varepsilon)$$
 or $p' - \hat{p} \approx (1 + \lambda)(-\varepsilon)$

- Both cases: Initial distance of p from \hat{p} (ε or $-\varepsilon$) multiplied by factor $(1 + \lambda)$.
 - •*T* generations later, initial distance from \hat{p} multiplied by $(1 + \lambda)^T$

Possibilities:
1) If λ > 0, (1 + λ)^T increases with T; <u>Unstable</u>
2) If λ < 0, have three cases

a) -1 < λ < 0: (1 + λ)^T decreases steadily to 0. <u>Stable</u>
b) -2 < λ < -1: (1 + λ)^T oscillates + and - but decreases in size to 0. <u>Stable</u>
c) λ < -2: (1 + λ)^T oscillates but increases in size. <u>Unstable</u>

- Technique ("a two-step recipe for performing a local stability analysis"):

1) Locate Equilibria: I.e., Determine values of *p* at which $\Delta p = 0$. 2) Find the eigenvalues. I.e., for each \hat{p} , compute: $\lambda = \frac{d}{dp} (\Delta p) \Big|_{p=\hat{p}}$

• Math Approach Applied to over-/underdominance

- Recall:

•
$$W_{AA} = W_{Aa} = W_{aa}$$

• $1 - s : 1 : 1 - t$

- s, t > 0 overdominance; s, t < 0 underdominance
- $\Delta p = pq \frac{qt ps}{1 p^2 s q^2 t}$

1) Know $\hat{p} = 0$, 1, or $\frac{t}{s+t}$ (3 equilibria)

2) $\hat{p} = 0$: $\lambda = t/(1-t)$ • Unstable for overdominance; Stable for underdominance.

 $\hat{p} = 1: \lambda = s/(1-s)$

• Unstable for overdominance; Stable for underdominance.

$$\hat{p} = \frac{t}{s+t}$$
: $\lambda = 1/(1 - 1/t - 1/s)$

- Stable for overdominance; Unstable (non-oscillatory) for underdominance.
- Turns out: overdominance case is also globally stable.

• More than 2 alleles (highlights)

• Like diallelic case:

- If a locally stable polymorphic equilibrium with all alleles is present, it's also globally stable.
- mean fitness at equilibrium > any homozygote fitness
- In contrast to diallelic case:
 - can have $w_{ii} < w_{ij} > w_{jj}$ for all pairs of alleles but polymorphic equilibrium with all alleles present is impossible
 - can have polymorphic equilibrium with all alleles present without all heterozygotes being superior in fitness to homozygotes (e.g., e.g., could have $w_{11} > w_{34}$)

Biological Significance of over-/underdominance

- Overdominance maintains genetic variation
- Role in "heterosis": superiority of hybrid crosses between different populations (strains)
- Underdominance leads to unstable polymorphic equilibrium
 - Underdominance won't maintain genetic variability within a population
 - With 2 alleles, there are 2 stable equilibria. Which one is approached depends on history (initial state) of the population.