OvER- AND UNDERDOMINANCE IN FITNESS; STABILITY

- Introduction

- What if an allele is favored most or least when present with its alternative?
- Situations called, respectively, overdominance and underdominance in fitness.
- Over-/underdominance in nature
- Overdominance: Sickle cell anemia
- Underdominance: chromosomal rearrangements; $R h$ locus
- NOTE: Absence of over- or under-dominance in phenotype \nRightarrow Over-/underdominance in fitness

- Evolutionary dynamics of over- and underdominance

$w_{A A} \quad w_{A a} \quad w_{a a}$

- Fitnesses: $1-s: 1$: $1-t$
- If $s, t>0$, overdominance in fitness: $w_{A A}<w_{A a}>w_{a a}$.
- If $s, t<0$, underdominance in fitness: $w_{A A}>w_{A a}<w_{a a}$.
- Plugging these fitnesses into general formula $\Delta p=p q \frac{\overline{\bar{W}}_{A}-\bar{w}_{a}}{\bar{w}}$ get:

$$
\Delta p=p q \frac{q t-p s}{1-p^{2} s-q^{2} t}
$$

- Ways to study this equation:
- Iterate equation for different values of t and s and initial p (e.g., using EXCEL).
- Other approach: Analysis
- Step 1: Find equilibria.
- I.e., find values of p for which $\Delta p=0$ or $p^{\prime}=p$.
- Three possibilities: (a) $p=0$;
(b) $p=1$;
(c) $p=\frac{t}{s+t}$
- (c) is biologically feasible $(0 \leq p \leq 1)$ only if $\underline{t, s>0}$ or $\underline{t, s<0}$.
- In this case, have polymorphic equilibrium.
- Step 2: Determine stability

- Digression: analyzing evolutionary (dynamical) systems

- Computational approaches are limited to exploring relatively small number of scenarios.
- Alternatively, can incompletely analyze an infinite number of scenarios: "mathematical analysis"
- General Approach: answer the following two questions
(1) Q : "What are the eventual outcomes of evolution?
- Evolution ceases if equilibrium is reached, i.e., if $\Delta p=0 \Leftrightarrow p^{\prime}=p$.
- An allele frequency at which evolution stops is called an equilibrium value.
- denoted \hat{p}
- Can be more than one equilibrium value.
(2) Q: Are these equilibria ever approach in the course of evolution?

A: Depends on stability of the equilibria, \hat{p}.

- Stability

- A taxonomy of equilibrium stabilities:

1) Unstable equilibrium: perturbed system actively moves away
2) Stable equilibrium
a) Neutrally stable: perturbed system neither moves away or returns
b) Locally stable: perturb system slightly \& it returns to equilibrium
c) Globally stable: any perturbation returns to equilibrium

- Back to over-/underdominance...STABILITY OF $\hat{p}=0,1, \frac{t}{s+t}$

- Qualitative Approach

- Populations near "boundary" equilibria ($\hat{p}=0,1$):
- driven away with overdominance
- return with underdominance
- Populations near polymorphic equilibrium $[\hat{p}=t /(s+t)]$:
- move towards polymorphic equilibrium with overdominance
- move away with underdominance
- NOTE: which direction depends on which side of $t /(s+t)$ population lies initially.

- Mathematical Approach

- Blow up graph of Δp near \hat{p};
- $\lambda=$ slope of Δp at $\hat{p}=$

$$
\left.\frac{d}{d p}(\Delta p)\right|_{p=\hat{p}}
$$

- λ is called an eigenvalue.

- Look at frequencies starting slightly above $\hat{p}: p=\hat{p}+\varepsilon$:
- $\varepsilon>0=$ initial distance from \hat{p}
- $p^{\prime}=p+\Delta p \approx(\hat{p}+\varepsilon)+\lambda \varepsilon=\hat{p}+(1+\lambda) \varepsilon$ or $p^{\prime}-\hat{p} \approx(1+\lambda) \varepsilon$
- Look at frequencies starting slightly below $\hat{p}: p=\hat{p}-\varepsilon \quad(\varepsilon>0)$:
- $p^{\prime}=p+\Delta p \approx(\hat{p}-\varepsilon)+\lambda(-\varepsilon)=\hat{p}+(1+\lambda)(-\varepsilon)$ or $p^{\prime}-\hat{p} \approx(1+\lambda)(-\varepsilon)$
- Both cases: Initial distance of p from $\hat{p}(\varepsilon$ or $-\varepsilon)$ multiplied by factor $(1+\lambda)$.
- T generations later, initial distance from \hat{p} multiplied by $(1+\lambda)^{T}$
- Possibilities:

1) If $\lambda>0,(1+\lambda)^{T}$ increases with T; Unstable
2) If $\lambda<0$, have three cases
a) $-1<\lambda<0:(1+\lambda)^{T}$ decreases steadily to 0 . Stable
b) $-2<\lambda<-1:(1+\lambda)^{T}$ oscillates + and - but decreases in size to 0 . Stable
c) $\lambda<-2:(1+\lambda)^{T}$ oscillates but increases in size. Unstable

- Technique ("a two-step recipe for performing a local stability analysis"):

1) Locate Equilibria: I.e., Determine values of p at which $\Delta p=0$.
2) Find the eigenvalues. I.e., for each \hat{p}, compute: $\lambda=\left.\frac{d}{d p}(\Delta p)\right|_{p=\hat{p}}$

- Math Approach Applied to over-/underdominance

- Recall:
$w_{A A} \quad w_{A a} \quad w_{a a}$
- $1-s: 1: 1-t$
- $s, t>0$ overdominance; $s, t<0$ underdominance
- $\Delta p=p q \frac{q t-p s}{1-p^{2} s-q^{2} t}$

1) Know $\hat{p}=0,1$, or $\frac{t}{s+t}$ (3 equilibria)
2) $\hat{p}=0: \lambda=t /(1-t)$

- Unstable for overdominance; Stable for underdominance.
$\hat{p}=1: \lambda=s /(1-s)$
- Unstable for overdominance; Stable for underdominance.
$\hat{p}=\frac{t}{s+t}: \lambda=1 /(1-1 / t-1 / s)$
- Stable for overdominance; Unstable (non-oscillatory) for underdominance.
- Turns out: overdominance case is also globally stable.

- More than 2 alleles (highlights)

- Like diallelic case:
- If a locally stable polymorphic equilibrium with all alleles is present, it's also globally stable.
- mean fitness at equilibrium > any homozygote fitness
- In contrast to diallelic case:
- can have $w_{i i}<w_{i j}>w_{j j}$ for all pairs of alleles but polymorphic equilibrium with all alleles present is impossible
- can have polymorphic equilibrium with all alleles present without all heterozygotes being superior in fitness to homozygotes (e.g., e.g., could have $w_{11}>w_{34}$)

Biological Significance of over-/underdominance

- Overdominance maintains genetic variation
- Role in "heterosis": superiority of hybrid crosses between different populations (strains)
- Underdominance leads to unstable polymorphic equilibrium
- Underdominance won't maintain genetic variability within a population
- With 2 alleles, there are 2 stable equilibria. Which one is approached depends on history (initial state) of the population.

