MEAN FITNESS AND EVOLUTION

• Wright's adaptive topography (or "landscape")

- Sewall Wright showed that evolution by natural selection of gene frequencies is intimately connected with the population mean fitness.
- The MATH... (Caveat: Derivation assumes fitnesses w_{AA} , w_{Aa} , w_{aa} are <u>constant.</u>)
 - Begin with the basic formula for mean fitness for a single locus with two alleles:

$$\overline{w} = p^2 w_{AA} + 2 p q w_{Aa} + q^2 w_{aa} \tag{1}$$

• Take derivative of Equation (1) with respect to p (note: dq/dp = -1):

$$\frac{d\overline{w}}{dp} = 2(pw_{AA} + qw_{Aa} - pw_{Aa} - qw_{aa}) = 2[(pw_{AA} + qw_{Aa}) - (pw_{Aa} + qw_{aa})] \quad . \tag{2}$$

• We already know the rate of change in an allele's frequency under selection is

$$\Delta p = pq \frac{\overline{w}_{A} - \overline{w}_{a}}{\overline{w}} = \frac{pq}{\overline{w}} (\overline{w}_{A} - \overline{w}_{a}) = \frac{pq}{\overline{w}} [(pw_{AA} + qw_{Aa}) - (pw_{Aa} + qw_{aa})]$$
(3)

• Notice that the expression in brackets on the right hand side of Equation (3) is $\frac{1}{2}$ of the right-hand side of (2). Therefore

$$\Delta p = \frac{pq}{\overline{w}} \left(\frac{1}{2} \frac{d\overline{w}}{dp} \right) = \frac{pq}{2} \left(\frac{1}{\overline{w}} \frac{d\overline{w}}{dp} \right) = \frac{pq}{2} \left(\frac{d\ln\overline{w}}{dp} \right) \,. \tag{4}$$

- Main Result: $\Delta p = \frac{pq}{2} \left(\frac{d \ln \overline{w}}{dp} \right)$

- Conclude: Rate of evolution by natural selection is determined by

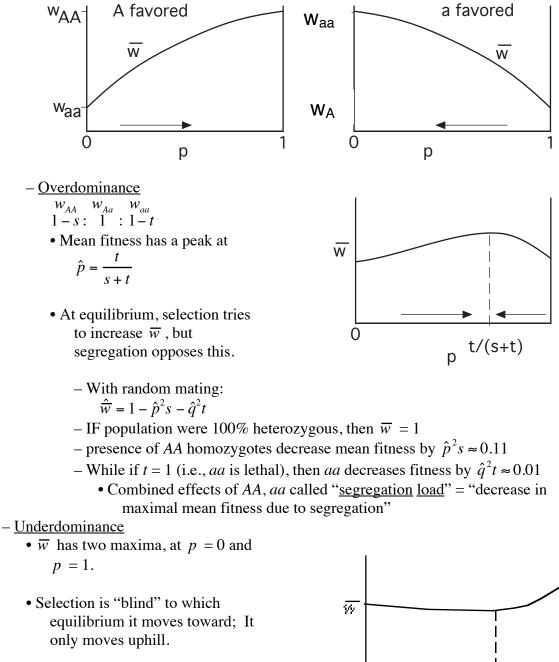
1) extent of genetic variation

2) the effect that a change in allele freq. will have on the population's mean fitness, \overline{w}

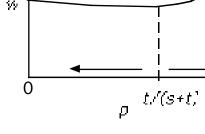
- The "Adaptive topography"

- Metaphor (often used improperly) for how populations evolve due to selection;
- Math shows that allele frequencies always change such that \overline{w} increases.
- Consequently, selection "moves" the population uphill on a graph of \overline{w} vs. p:

- No over- or underdominance
 - Mean fitness is at a maximum at p = 0 or p = 1, depending on which allele is favored:



• Consequence: Depending on history, a population may never reach a state of globally maximal (optimal) fitness!!



- Digression: the Adaptive Trampoline?

• Fisher's "Fundamental" Theorem of Natural Selection

- Haploid (asexual) version:

•
$$\overline{w} = pw_A + qw_a$$

•
$$\overline{w}' = p'w_A + q'w_a = \left(p\frac{w_A}{\overline{w}}\right)w_A + \left(q\frac{w_a}{\overline{w}}\right)w_a = \frac{pw_A^2 + qw_a^2}{\overline{w}} = \frac{\overline{w^2}}{\overline{w}}$$

The set of \overline{w} and \overline

• Thus,
$$\Delta \overline{w} = \overline{w}' - \overline{w} = \frac{1}{\overline{w}} - \overline{w} = \frac{1}{\overline{w}} - \frac{1}{\overline{w}} = \frac{1}{\overline{w}}$$

• Suppose we scaled w_A, w_a so that $\overline{w} = 1$. Then $\Delta \overline{w} = Var(w)$. - Variances are never negative, so \overline{w} never decreases.

- **Diploid** derivation & version:
 - Another way to write the equation for Δp is

$$\Delta p = p' - p = p \frac{\overline{w}_A}{\overline{w}} - p = p \frac{\overline{w}_A - \overline{w}}{\overline{w}} = p \frac{\alpha_A}{\overline{w}}$$
(5a)

- Fisher referred to the quantity $\alpha_A = \overline{w}_A \overline{w}$ as the <u>average excess</u> of allele A.
- We can likewise write the equation for Δq as

$$\Delta q = q \frac{\overline{w_a} - \overline{w}}{\overline{w}} = q \frac{\alpha_a}{\overline{w}}$$
(5b)

where $\alpha_a = \overline{w}_a - \overline{w}$ is the average excess of allele *a*.

- Equations (5a) and (5b) show us instantly whether p or q is increasing or decreasing: it depends simply on whether the average excess is positive or negative.
- What is the mean relative fitness in the next generation? Using the fact $\Delta q = -\Delta p$ (Suggested exercise: show this), we find

$$\overline{w}' = p'^{2} w_{AA} + 2p'q' w_{Aa} + q'^{2} w_{aa}$$

$$= (p + \Delta p)^{2} w_{AA} + 2(p + \Delta p)(q - \Delta p) w_{Aa} + (q - \Delta p)^{2} w_{aa}$$

$$= \overline{w} + 2\Delta p [p w_{AA} + q w_{Aa} - (p w_{Aa} + q w_{aa})] + (\Delta p)^{2} (w_{AA} - 2 w_{Aa} + w_{aa})$$
(6)

- If differences in fitness are small, allele frequencies will be changing slowly and (Δp)² will be very small compared to Δp. We can therefore neglect terms involving (Δp)² in Equation (6) and approximate the change in w as: Δw = w' - w ≈ 2Δp[pw_{AA} + qw_{Aa} - (pw_{Aa} + qw_{aa})] ≈ 2Δp[w_A - w_a) ≈ 2Δp[(w_A - w) - (w_a - w)] ≈ 2Δp(w_A - w) + 2Δq(w_a - w) = 2Δpα_A + 2Δqα_a
- Now use Equations (5a) and (5b) by inserting those definitions for Δp and Δq into the above to find:

$$\Delta \overline{w} \approx 2 \left(p \frac{\alpha_A}{\overline{w}} \right) \alpha_A + 2 \left(q \frac{\alpha_a}{\overline{w}} \right) \alpha_a = \frac{2 \left(p \alpha_A^2 + q \alpha_a^2 \right)}{\overline{w}} . \tag{7}$$

- The expression in the numerator of (7) is simply the variance in α , the relative excess of fitness, for the two alleles (the factor 2 appears because we are dealing with diploids). This quantity is known as the <u>additive genetic</u> <u>variance</u> of fitness, sometimes denoted V_A .

• Equation (7) can thus be written as
$$\Delta \overline{w} \approx \frac{\operatorname{Var}(\alpha)}{\overline{w}} = \frac{V_A}{\overline{w}}$$
.

- We can rescale to appropriate units by dividing through by \overline{w} . This expresses $\Delta \overline{w}$ as a proportional change, and standardizes the variance to squared units of \overline{w} . The big conclusion is that $\frac{\Delta \overline{w}}{\overline{w}} \approx \frac{V_A}{\overline{w}^2}$.
- This shows Fisher's Fundamental Theorem. (Approximately, that is, which is the best that can be done; it's not exactly true even for a single diploid locus!) As Fisher states it (1958, p. 37):

"The rate of increase in fitness of any organism at any time is equal to its genetic variance in fitness at that time."

• J.F. Crow paraphrases Fisher's words in the more accurate statement:

"The relative (geometric) rate of increase in mean fitness in any generation is approximately equal to the standardized additive genetic variance of fitness at that time."

• Comments on Fitness Maximization

- Selection works to increase \overline{w} under <u>some</u> circumstances
- Other evolutionary forces can cause \overline{w} to decrease, even when selection favors increasing \overline{w} .