Genetic architecture of adaptive differentiation in evolving host races of the soapberry bug, *Jadera haematoloma*

Scott P. Carroll, Hugh Dingle, Thomas R. Famula & CharlesW. Fox *Genetica* 112–113: 257–272, 2001

Introduction

- 2 races of Soapberry Bug Jadera haematoloma occur on two hosts
 - 100 generations diverged
- Habitat
 - Native plants Cardiospermum corindum
 - Introduced plants Koelreutaria elegans
- Cross-rearing of ancestral and derived bugs on native or introduced hosts
- 3 Traits measured
 - Length of mouthparts
 - Body size
 - Development time
- Estimated 3 rates for each trait
 - Evolutionary path
 - Compares 2 races when reared on introduced host
 - Current Ecological Contrast
 - Compared each race when reared on natal host
 - Evolved Trade-off
 - Compares 2 races when reared on native host

Results

- Additive genetic variance large for mouthpart length: 60%
- Other traits:
 - Interaction of dominance, maternal effects, epistasis
- Rearing host plant affected genetic architecture
 - No relationship with evolution rate
- Selection resulted in additive and nonadditive race differentiation

Rates of Evolution

- Beak length
 - Derived race beak length significantly shorter in when reared on native plants
 - Introduced host bugs beak length reduced from 70% to 50% of body length
 - Similar evolved path and current ecological contrast values= introduced host hasn't impeded or facilitated adaptation to that host (yet beaks shorter)
 - Rate of change 3000-7000 darwins/0.01-0.035 haldanes
- Thorax width
 - No significant difference between races
 - Beak length differences are independent of body size
 - Current ecological contrast is a host effect rather than evolutionary change
- Development time
 - Means:
 - Ancestral race on native host 35 ± 0.6 days
 - Derived race on introduced host 34 ± 0.9 days

- Each race requires 20-25% longer to develop on non-natal host plant
- Little differentiation with current ecological contrast
- Beak length
 - Shortest in DxD line, longest AxA line
 - Greater on native vs non-native host in all lines
 - Variation beyond additive due to epistasis on introduced host, no definitive effects for native host
 - Crossing ancestral (long beak) X derived (short beak) = beak longer than ancestral
- Thorax width
 - Varied less than 2% in first experimental generation
 - Hybrid means differed from purebreds on both hosts
 - Weak additive effects (7-9%)
- Development time
 - Ancestral line took longer to develop
 - Introduced host seeds are available less time of the year
 - Additive control strong on introduced host
 - No distinct effects for native host

And the beak shall inherit—evolution in response to invasion

Scott P. Carroll, Jenella E. Loye, Hugh Dingle, Michael Mathieson, Thomas R. Famula, Myron P. Zalucki

Ecology Letters 8: 944-951, 2001

Introduction

- 2 races of Soapberry Bug *Leptocoris tagalicus* occur on two hosts
 - 100 generations diverged (1965 introduction of invasive plant)
 - Native plant Alectryon tomentosus
 - Introduced plant Cardiospermum grandiflorum
- Hypothesis: Will a host plant switch to a larger fruit promote an *increase* in beak length?
 - Beak length differences between bugs on native and alien host are the result of evolution
 - Observational Studies
 - Breeding experiment
 - The derived population on the alien balloon vine has evolved the ability to better reach the plant's seeds
 - Feeding trial
- Observational study looked at 857 live specimens (native and invasive), and 30 museum specimens
 - 3 Traits measured
 - Beak length
 - Body width
 - Body length
- Reciprocal rearing experiments
 - Evolutionary path
 - Compares 2 races when reared on natal and non-natal host

- Measured beak length in response to cross-rearing experiments
- Feeding trial
 - 12 replicates

•

- 6 with soapberry bugs collected from native woolly rambutan
 - 6 with soapberry bugs collected from invasive balloon vine
- Insects placed in separate cages
 - Observed for seed choice
 - Counted feeding scars

Results

- Observational study
 - Average female beak lengths in 10 of the 12 populations on balloon vine were greater than in all 10 populations on the native host (similar results for males)
 - Host effect on beak length independent of body size measures
 - Variation in beak length not attributable to differences among populations within each host species
 - In females, beak length after 1965 averaged almost 10% longer, while the body size measures were static (similar trend for males)
- Cross-rearing Experiment
 - Host-associated differences in beak length are genetically based
 - Beak length was consistently greater in the bugs collected from balloon vine than from the native host
 - Maternal host effects varied significantly between the populations
 - Rearing host effects also varied significantly
 - Host species had opposite effects on beak length
- Feeding Trial
 - Females collected and reared from the balloon vine sites fed on $42 \pm 8\%$ of the seeds over the week
 - Females from woolly rambutan fed on only $24 \pm 10\%$ of such seeds

Discussion

- Modern insects are more capable of attacking balloon vine than those from the past
- Bugs that came from balloon vines attacked them 1.8X more
- Soapberry bugs were present at all fruiting balloon vines
- Insects show host preference
- Weak evidence of environmental effects, strong evidence of genetic effects