Exam 1 Key

- (a) L is lower triangular with 1's on the diagonal. U is upper diagonal with pivots on the diagonal.
 - (b) No. If a zero pivot is encountered during Gaussian elimination, then a nonsingular matrix will not have a LU factorization. (However, a permuted version of the matrix would have a LU factorization.)
 - (c) If the LU factorization of a matrix is known, solving the linear system Ax = b using this factorization involves far fewer arithmetic operations than Gaussian elimination.
 - (d) $\mathbf{Ax} = (\mathbf{LU})\mathbf{x} = \mathbf{L}(\mathbf{Ux}) = \mathbf{Ly} = \mathbf{b}$, where $\mathbf{Ux} = \mathbf{y}$. To solve $\mathbf{Ax} = \mathbf{b}$, first solve $\mathbf{Ly} = \mathbf{b}$ (forward substitution): $y_1 = b_1 = 1$; $2y_1 + y_2 = 2(1) + y_2 = b_2 = -1$ $y_2 = -3$. Next, solve $\mathbf{Ux} = \mathbf{y}$ (back substitution): $3x_2 = y_2 = -3$ $x_2 = -1$. $2x_1 - x_2 = 2x_1 - (-1) = y_1 = 1$ $2x_1 = 0$ $x_1 = 0$. $\mathbf{x} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$.
- 2. (a) Multiply both sides of $\mathbf{A}(\mathbf{I} \mathbf{A}) = (\mathbf{I} \mathbf{A})\mathbf{A}$ on the left by $(\mathbf{I} \mathbf{A})^{-1}$ $(\mathbf{I} - \mathbf{A})^{-1}\mathbf{A}(\mathbf{I} - \mathbf{A}) = \mathbf{A}$. Now multiply both sides by $(\mathbf{I} - \mathbf{A})^{-1}$ on the right $(\mathbf{I} - \mathbf{A})^{-1}\mathbf{A} = \mathbf{A}(\mathbf{I} - \mathbf{A})^{-1}$.

$$\mathbf{B}^{\mathrm{T}} = \left[(\mathbf{I} + \mathbf{K})(\mathbf{I} - \mathbf{K})^{-1} \right]^{\mathrm{T}} = \left[(\mathbf{I} - \mathbf{K})^{-1} \right]^{\mathrm{T}} (\mathbf{I} + \mathbf{K})^{\mathrm{T}} = \left[(\mathbf{I} - \mathbf{K})^{\mathrm{T}} \right]^{-1} (\mathbf{I} + \mathbf{K})^{\mathrm{T}}$$
$$= \left(\mathbf{I}^{\mathrm{T}} - \mathbf{K}^{\mathrm{T}} \right)^{-1} \left(\mathbf{I}^{\mathrm{T}} + \mathbf{K}^{\mathrm{T}} \right) = (\mathbf{I} + \mathbf{K})^{-1} (\mathbf{I} - \mathbf{K})$$
$$\mathbf{B}^{-1} = \left[(\mathbf{I} + \mathbf{K})(\mathbf{I} - \mathbf{K})^{-1} \right]^{-1} = \left[(\mathbf{I} - \mathbf{K})^{-1} \right]^{-1} (\mathbf{I} + \mathbf{K})^{-1}$$
$$= (\mathbf{I} - \mathbf{K})(\mathbf{I} + \mathbf{K})^{-1} \stackrel{\text{by (a)}}{=} (\mathbf{I} + \mathbf{K})^{-1} (\mathbf{I} - \mathbf{K}) = \mathbf{B}^{\mathrm{T}}$$

Math 420

3. (a) Use Gaussian elimination to solve Ax = 0:

for the basic variables (x_1 and x_2) in terms of the free variable x_3 : $x_2 + x_3 = 0$

$$x_{2} = -x_{3}. \quad x_{1} + x_{2} - x_{3} = x_{1} + (-x_{3}) - x_{3} = x_{1} - 2x_{3} = 0 \qquad x_{1} = 2x_{3}$$

$$2x_{3} \qquad 2 \qquad 2$$

$$x = -x_{3} = x_{3} - 1 \qquad \text{a basis for the nullspace of } \mathbf{A} \text{ is } \{ \begin{array}{c} -1 \\ 1 \end{array} \}.$$

$$x_{3} \qquad 1 \qquad 1$$

(b) dim $R(\mathbf{A}^{T}) = \operatorname{rank}(\mathbf{A}^{T}) = \operatorname{rank}(\mathbf{A}) = 2$ since the row echelon form of **A** has two pivots (see underlined elements above).

4. $\tilde{S} = \{\mathbf{w}, \mathbf{z}\}$ is linearly independent $_{1}\mathbf{w} + _{2}\mathbf{z} = \mathbf{0}$ $_{1} = _{2} = 0$. Now $_{1}\mathbf{w} + _{2}\mathbf{z} = _{1}(\mathbf{x} + \mathbf{y}) + _{2}(\mathbf{x} - \mathbf{y}) = (_{1} + _{2})\mathbf{x} + (_{1} - _{2})\mathbf{y} = \mathbf{0}$. The coefficients of \mathbf{x} and \mathbf{y} must both vanish since S is a linearly independent set. That is, $_{1} + _{2} = 0$ and $_{1} - _{2} = 0$ $_{1} = -_{2}$ and $_{1} = _{2}$ $_{2} = -_{2}$ $_{2} = 0$ $_{1} = 0$. Thus, $_{1}\mathbf{w} + _{2}\mathbf{z} = \mathbf{0}$ $_{1} = _{2} = 0$ and therefore, \tilde{S} is a linearly independent set.

5. Let $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix}$. Then \mathbf{v} span(S) $\mathbf{A}\mathbf{x} = \mathbf{v}$ is consistent $\operatorname{rank}(\mathbf{A}|\mathbf{v}) = \operatorname{rank}(\mathbf{A})$. $\begin{bmatrix} 1 & -1 \end{bmatrix}$

 $= \operatorname{rank}(\mathbf{A})$ c + 3 = 0 c = -3. Thus, **v** $\operatorname{span}(S)$ if and only if c = -3.