Exam 2 Key

1. Consider

$$\|\mathbf{x} + \mathbf{y}\|^{2} = \langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle$$
$$= \|\mathbf{x}\|^{2} + 2\langle \mathbf{x}, \mathbf{y} \rangle + \|\mathbf{y}\|^{2} \text{ since } \langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle \text{ for real spaces.}$$
$$\|\mathbf{x} + \mathbf{y}\|^{2} = \|\mathbf{x}\|^{2} + \|\mathbf{y}\|^{2} \quad \langle \mathbf{x}, \mathbf{y} \rangle = 0 \quad \mathbf{x} \quad \mathbf{y}.$$

- 2. By definition $\|\mathbf{U}\|_{2} = \max_{\|\mathbf{x}\|_{2}=1} \|\mathbf{U}\mathbf{x}\|_{2}$. But U unitary $\|\mathbf{U}\mathbf{x}\|_{2} = \|\mathbf{x}\|_{2}$ $\|\mathbf{U}\|_{2} = \max_{\|\mathbf{x}\|_{2}=1} \|\mathbf{x}\|_{2} = 1$.
- 3. If (i) holds, **b** $R(\mathbf{A})$. Since $R(\mathbf{A}) = N(\mathbf{A}^{T})$, $\langle \mathbf{y}, \mathbf{b} \rangle = 0$ **y** $N(\mathbf{A}^{T})$. That is, $\langle \mathbf{y}, \mathbf{b} \rangle = 0$ **y** such that $\mathbf{y}^{T}\mathbf{A} = \mathbf{0}$. Thus, if (i) is true, (ii) must be false. If (ii) holds, then **b** $N(\mathbf{A}) = R(\mathbf{A})$ there is no **x** such that $\mathbf{A}\mathbf{x} = \mathbf{b}$. Thus, if (ii) is true, (i) must be false.
- 4. (a) $F(\mathbf{U}_1) = \mathbf{U}_1$, $F(\mathbf{U}_2) = \mathbf{U}_3$, $F(\mathbf{U}_3) = \mathbf{U}_2$, and $F(\mathbf{U}_4) = \mathbf{U}_4$

 $\begin{bmatrix} F \end{bmatrix}_{B} = \begin{array}{ccccc} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array}$

(b) Need to compute $[F(\mathbf{A})]_B = [F]_B [\mathbf{A}]_B$. But $\mathbf{A} = a\mathbf{U}_1 + b\mathbf{U}_2 + c\mathbf{U}_3 + d\mathbf{U}_4$ $[\mathbf{A}]_B = b\mathbf{U}_1 + b\mathbf{U}_2 + c\mathbf{U}_3 + d\mathbf{U}_4$

 $(a \ b \ c \ d)^{\mathrm{T}} \quad [F(\mathbf{A})]_{B} = \begin{array}{c} 1 \ 0 \ 0 \ 0 \ a \ a \\ 0 \ 0 \ 1 \ 0 \ b \\ 0 \ 0 \ c \\ 0 \ 0 \ 1 \ d \\ 0 \ 0 \ c \\ 0 \ 0 \ 1 \ d \\ d \end{array} \qquad F(\mathbf{A}) = a\mathbf{U}_{1} + c\mathbf{U}_{2} + b\mathbf{U}_{3} + d\mathbf{U}_{4} = \\ a \ 0 \ 0 \ 0 \ 1 \ d \\ d \\ a \ 0 \ 0 \ 0 \ 1 \ d \\ d \\ a \ 0 \ 0 \ 0 \ 1 \ d \\ d \\ d \\ \end{array}$

4. (c) $[\mathbf{V}_1]_B = \mathbf{U}_1 + \mathbf{U}_4$, $[\mathbf{V}_2]_B = \mathbf{U}_2 + \mathbf{U}_3$, $[\mathbf{V}_3]_B = \mathbf{U}_1 + \mathbf{U}_3 + \mathbf{U}_4$, and $[\mathbf{V}_1]_B = \mathbf{U}_1 + \mathbf{U}_2 + \mathbf{U}_4$

$$\begin{bmatrix} I \end{bmatrix}_{BB} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{bmatrix}$$

- 5. (a) X + Y is spanned by $B = B_X$ $B_Y = \{\mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3\}$. Since \mathbf{Q} is orthogonal, B is orthonormal which implies B is linearly independent. Thus, B is a basis for X + Y. Since \mathbf{Q} is nonsingular, B must also be a basis for ³. Thus, ³ = X + Y. To show $X = \{\mathbf{0}\}$, let $\mathbf{v} = X = Y$. Then $\mathbf{v} = a\mathbf{q}_1 + b\mathbf{q}_2$ for some a and b since $\mathbf{v} = X$ and $\mathbf{v} = c\mathbf{q}_3$ for some c since $\mathbf{v} = Y$. This implies $\|\mathbf{v}\|^2 = \langle \mathbf{v}, \mathbf{v} \rangle = \langle a\mathbf{q}_1 + b\mathbf{q}_2, c\mathbf{q}_3 \rangle = ac \langle \mathbf{q}_1, \mathbf{q}_3 \rangle + bc \langle \mathbf{q}_2, \mathbf{q}_3 \rangle = 0$ since the \mathbf{q}_I 's are orthogonal. Thus, $\mathbf{v} = \mathbf{0} = X = Y = \{\mathbf{0}\}$.
 - (b) Use the Fourier expansion of **v**: $\mathbf{v} = \underbrace{\left(\langle \mathbf{v}, \mathbf{q}_1 \rangle \mathbf{q}_1 + \langle \mathbf{v}, \mathbf{q}_2 \rangle \mathbf{q}_2\right)}_X + \underbrace{\langle \mathbf{v}, \mathbf{q}_3 \rangle \mathbf{q}_3}_Y = \underbrace{\left(3\mathbf{q}_1 \mathbf{q}_2\right)}_X + \underbrace{\left(-\mathbf{q}_3\right)}_Y$ Thus $\mathbf{v} = \mathbf{x} + \mathbf{y}$ where $\mathbf{x} = 3\mathbf{q}_1 - \mathbf{q}_2 = \begin{bmatrix} 3/\sqrt{2} & -1/\sqrt{2} \\ -1 & X \text{ and } \mathbf{y} = -\mathbf{q}_3 = \begin{bmatrix} 0 \\ 1/\sqrt{2} \end{bmatrix}$.