Exam 2 Key

1. Consider

$$
\begin{aligned}
& \mid \mathbf{x}+\mathbf{y} \|^{2}=\langle\mathbf{x}+\mathbf{y}, \mathbf{x}+\mathbf{y}\rangle=\langle\mathbf{x}, \mathbf{x}\rangle+\langle\mathbf{x}, \mathbf{y}\rangle+\langle\mathbf{y}, \mathbf{x}\rangle+\langle\mathbf{y}, \mathbf{y}\rangle \\
&=|\mathbf{x}|^{2}+2\langle\mathbf{x}, \mathbf{y}\rangle+\|\mathbf{y}\|^{2} \text { since }\langle\mathbf{x}, \mathbf{y}\rangle=\langle\mathbf{y}, \mathbf{x}\rangle \text { for real spaces. } \\
& \Rightarrow\left|\mathbf{x}+\mathbf{y}\left\|^{2}=|\mathbf{x}|^{2}+\right\| \mathbf{y}\right|^{2} \Leftrightarrow\langle\mathbf{x}, \mathbf{y}\rangle=0 \Leftrightarrow \mathbf{x} \perp \mathbf{y} .
\end{aligned}
$$

2. By definition $|\mathbf{U}|_{2}=\max _{\mathbf{|} \mathbf{x}_{2}=1} \mid \mathbf{U} \mathbf{x} \|_{2}$. But \mathbf{U} unitary $\Rightarrow\left|\mathbf{U} \mathbf{x}\left\|_{2}=\right\| \mathbf{x}\left\|_{2} \Rightarrow|\mathbf{U}|_{2}=\max _{\mathbf{|} \mathbf{x}_{2}=1} \mid \mathbf{x}\right\|_{2}=1\right.$.
3. If (i) holds, $\mathbf{b} \in R(\mathbf{A})$. Since $R(\mathbf{A})^{\perp}=N\left(\mathbf{A}^{\mathbf{T}}\right),\langle\mathbf{y}, \mathbf{b}\rangle=0 \forall \mathbf{y} \in N\left(\mathbf{A}^{\mathbf{T}}\right)$. That is, $\langle\mathbf{y}, \mathbf{b}\rangle=0 \forall \mathbf{y}$ such that $\mathbf{y}^{\mathrm{T}} \mathbf{A}=\mathbf{0}$. Thus, if (i) is true, (ii) must be false. If (ii) holds, then $\mathbf{b} \notin N(\mathbf{A})^{\perp}=R(\mathbf{A})$ \Rightarrow there is no \mathbf{x} such that $\mathbf{A x}=\mathbf{b}$. Thus, if (ii) is true, (i) must be false.
4. (a) $F\left(\mathbf{U}_{1}\right)=\mathbf{U}_{1}, F\left(\mathbf{U}_{2}\right)=\mathbf{U}_{3}, F\left(\mathbf{U}_{3}\right)=\mathbf{U}_{2}$, and $F\left(\mathbf{U}_{4}\right)=\mathbf{U}_{4} \Rightarrow$

$$
[F]_{B}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

(b) Need to compute $[F(\mathbf{A})]_{B}=[F]_{B}[\mathbf{A}]_{B}$. But $\mathbf{A}=a \mathbf{U}_{1}+b \mathbf{U}_{2}+c \mathbf{U}_{3}+d \mathbf{U}_{4} \Rightarrow[\mathbf{A}]_{B}=$

$$
\begin{aligned}
& \left(\begin{array}{lll}
a & b & c
\end{array}\right)^{\mathrm{T}} \Rightarrow[F(\mathbf{A})]_{B}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)=\left(\begin{array}{l}
a \\
c \\
b \\
d
\end{array}\right) \Rightarrow F(\mathbf{A})=a \mathbf{U}_{1}+c \mathbf{U}_{2}+b \mathbf{U}_{3}+d \mathbf{U}_{4}= \\
& \left(\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & c \\
0 & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
b & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
0 & d
\end{array}\right)=\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right) .
\end{aligned}
$$

4. (c) $\left[\mathbf{V}_{1}\right]_{B}=\mathbf{U}_{1}+\mathbf{U}_{4},\left[\mathbf{V}_{2}\right]_{B}=\mathbf{U}_{2}+\mathbf{U}_{3},\left[\mathbf{V}_{3}\right]_{B}=\mathbf{U}_{1}+\mathbf{U}_{3}+\mathbf{U}_{4}$, and $\left[\mathbf{V}_{1}\right]_{B}=\mathbf{U}_{1}+\mathbf{U}_{2}+\mathbf{U}_{4} \Rightarrow$

$$
[I]_{B^{\prime} B}=\left(\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1
\end{array}\right)
$$

5. (a) $X+Y$ is spanned by $B=B_{X} \cup B_{Y}=\left\{\mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3}\right\}$. Since \mathbf{Q} is orthogonal, B is orthonormal which implies B is linearly independent. Thus, B is a basis for $X+Y$. Since \mathbf{Q} is nonsingular, B must also be a basis for \mathfrak{R}^{3}. Thus, $\mathfrak{R}^{3}=X+Y$. To show $X \cap Y=\{\boldsymbol{0}\}$, let $\mathbf{v} \in X \cap Y$. Then $\mathbf{v}=a \mathbf{q}_{1}+b \mathbf{q}_{2}$ for some a and b since $\mathbf{v} \in X$ and $\mathbf{v}=c \mathbf{q}_{3}$ for some c since $\mathbf{v} \in Y$. This implies $\mid \mathbf{v} \|^{2}=\{\mathbf{v}, \mathbf{v}\rangle=\left\langle a \mathbf{q}_{1}+b \mathbf{q}_{2}, c \mathbf{q}_{3}\right\rangle=a c^{\prime}\left\langle\mathbf{q}_{1}, \mathbf{q}_{3}\right\rangle+b c^{\prime}\left\langle\mathbf{q}_{2}, \mathbf{q}_{3}\right\rangle=0$ since the \mathbf{q}_{I} 's are orthogonal. Thus, $\mathbf{v}=\mathbf{0} \Rightarrow X \cap Y=\{\mathbf{0}\} \Rightarrow \mathfrak{R}^{3}=X \oplus Y$.
(b) Use the Fourier expansion of $\mathbf{v}: \quad \mathbf{v}=\underbrace{\left(\left\{\mathbf{v}, \mathbf{q}_{1}\right\rangle \mathbf{q}_{1}+\left\{\mathbf{v}, \mathbf{q}_{2}\right\rangle \mathbf{q}_{2}\right)}_{\in X}+\underbrace{\left\{\mathbf{v}, \mathbf{q}_{3}\right\rangle \mathbf{q}_{3}}_{\epsilon Y}=\underbrace{\left(3 \mathbf{q}_{1}-\mathbf{q}_{2}\right)}_{\in X}+\underbrace{\left(-\mathbf{q}_{3}\right)}_{\epsilon Y}$ Thus $\mathbf{v}=\mathbf{x}+\mathbf{y}$ where $\mathbf{x}=3 \mathbf{q}_{1}-\mathbf{q}_{2}=\left(\begin{array}{c}3 / \sqrt{2} \\ -1 \\ 3 / \sqrt{2}\end{array}\right) \in X$ and $\mathbf{y}=-\mathbf{q}_{3}=\left(\begin{array}{r}-1 / \sqrt{2} \\ 0 \\ 1 / \sqrt{2}\end{array}\right)$.
