Key to Problem Set \#1

1. (a) $\operatorname{rank}(\mathbf{A})=2$.
(b) $\left(\begin{array}{cccc}\underline{1} & 0 & -2 & 1 \\ 0 & \underline{1} & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$ (Underlined entries are pivots.)
(c) Basic columns: $\mathbf{A}_{*_{1}}, \mathbf{A}_{*_{2}}$. Nonbasic columns: $\mathbf{A}_{*_{3}}, \mathbf{A}_{*_{4}}$.

Relationships: $\mathbf{A}_{*_{3}}=-2 \mathbf{A}_{*_{1}}+\mathbf{A}_{*_{2}}, \mathbf{A}_{*_{4}}=\mathbf{A}_{*_{1}}$
2. (a) Gaussian elimination will not introduce nonzero elements into a column containing only zeros. Consequently, a column containing all zeros cannot contain a pivot since pivots, by definition, must be nonzero. Thus, a column with all zeros cannot be basic.
(b) Consider the matrix

$$
\left(\right)
$$

where each * represents a nonzero entry. This matrix is in row echelon form; the pivots are underlined. Although the $3^{\text {rd }}$ column contains no zero entries, it also has no pivot and so is nonbasic.
3. The system is consistent for any values of b_{1} and b_{2}.
4. \mathbf{A} is symmetric but not skew-symmetric, hermitian, or skew-hermitian.
5. Conjugate transposition is not linear since $(\alpha \mathbf{A})^{*}=\bar{\alpha} \mathbf{A}^{*} \neq \alpha \mathbf{A}^{*}$.

