Key to Problem Set \#2

1. Using Gauss-Jordan elimination, one reduces the augmented matrix
$(\mathbf{A} \mid \mathbf{I})=\left(\begin{array}{ll|ll}a & b & 1 & 0 \\ c & d & 0 & 1\end{array}\right)$ using elementary row operations (details not shown) to $\left(\begin{array}{cc|cc}1 & 0 & \frac{d}{a d-b c} & \frac{-b}{a d-b c} \\ 0 & 1 & \frac{-c}{a d-b c} & \frac{a}{a d-b c}\end{array}\right)=\left(\mathbf{I} \mid \mathbf{A}^{-1}\right)$ where $\mathbf{A}^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$.
2. In each case, the inverse reverses the corresponding row operation:
(i) $\mathbf{P}_{i j}^{-1}=\mathbf{I}+\frac{\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)^{\mathrm{T}}}{1-\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)^{\mathrm{T}}\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)}=\mathbf{I}-\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)^{\mathrm{T}}=\mathbf{P}_{i j}$. That is, the inverse of $\mathbf{P}_{i j}$ also exchanges rows i and j.
(ii) If $\mathbf{D}_{i}=\mathbf{I}-(1-\alpha) \mathbf{e}_{i} \mathbf{e}_{i}^{\mathrm{T}}$, then \mathbf{D}_{i} multiplies row i by α. We have $\mathbf{D}_{i}^{-1}=\mathbf{I}+\frac{(1-\alpha) \mathbf{e}_{i} \mathbf{e}_{i}^{\mathrm{T}}}{1-(1-\alpha) \mathbf{e}_{i}^{\mathrm{T}} \mathbf{e}_{i}}=\mathbf{I}-\left(1-\frac{1}{\alpha}\right) \mathbf{e}_{i} \mathbf{e}_{i}^{\mathrm{T}}$. That is, $\mathbf{D}_{i}^{-1} \underline{\text { divides row } i \text { by } \alpha .}$
(iii) If $\mathbf{E}_{i j}=\mathbf{I}+\alpha \mathbf{e}_{j} \mathbf{e}_{i}^{\mathrm{T}}$, then α times row i is added to row j. We have $\mathbf{E}_{i j}^{-1}=\left[\mathbf{I}-(-\alpha) \mathbf{e}_{j} \mathbf{e}_{i}^{\mathrm{T}}\right]^{-1}=\mathbf{I}+\frac{-\alpha \mathbf{e}_{j} \mathbf{e}_{i}^{\mathrm{T}}}{1-(-\alpha) \mathbf{e}_{i}^{\mathrm{T}} \mathbf{e}_{j}}=\mathbf{I}+(-\alpha) \mathbf{e}_{\mathbf{j}_{j}}^{\mathrm{T}}$. That is, $\mathbf{E}_{i j}^{-1} \underline{\text { subtracts }} \alpha$ times row i from row j.
3. The following give some possibilities (many other answers are correct for parts a, b, and c):
(a) Suppose \mathbf{A} is nonsingular. Then $\mathbf{B}=-\mathbf{A}$ is also nonsingular (since a scalar multiple of a nonsingular matrix is nonsingular) but $\mathbf{A}+\mathbf{B}=\mathbf{A}-\mathbf{A}=\mathbf{0}$ is clearly not invertible.
(b) The matrix $\mathbf{A}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ is singular since it is in row echelon form and has only one pivot. Likewise, the matrix $\mathbf{B}=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$ is singular since a row exchange
shows it has a only one pivot. But $\mathbf{A}+\mathbf{B}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ has rank $=2$ and is thus invertible.
(c) Both $\mathbf{A}=\mathbf{I}$ and $\mathbf{B}=2 \mathbf{I}$ are obviously nonsingular. $\mathbf{A}+\mathbf{B}=3 \mathbf{I}$ is also nonsingular.
(d) Since $\mathbf{A}^{-1}, \mathbf{B}^{-1}$, and $\mathbf{A}+\mathbf{B}$ are all nonsingular matrices by assumption, then $\mathbf{B}^{-1}+\mathbf{A}^{-1}=\mathbf{A}^{-1}(\mathbf{A}+\mathbf{B}) \mathbf{B}^{-1}$ is the product of nonsingular matrices and is thus nonsingular as well. $\left(\mathbf{B}^{-1}+\mathbf{A}^{-1}\right)^{-1}=\left[\mathbf{A}^{-1}(\mathbf{A}+\mathbf{B}) \mathbf{B}^{-1}\right]^{-1}=\mathbf{B}(\mathbf{A}+\mathbf{B})^{-1} \mathbf{A}$.
4. $\kappa_{\mathrm{A}}=\frac{4}{b}+4+b, \kappa_{\mathrm{B}}=\frac{4}{b}+4+b, \kappa_{\mathrm{C}}=\frac{4}{b}$, and $\kappa_{\mathrm{D}}=\frac{4}{b^{2}}+\frac{4}{b}+1$. Since $0<b<1$, we have $\kappa_{D}>\kappa_{A}=\kappa_{B}>\kappa_{C}$. Matrix \mathbf{D} is an order of magnitude more ill conditioned than the other matrices. Matrix \mathbf{C} is only marginally better conditioned than \mathbf{A} and \mathbf{B}.
