Key to Problem Set #2

- 1. Using Gauss-Jordan elimination, one reduces the augmented matrix
 - $(\mathbf{A} | \mathbf{I}) = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ using elementary row operations (details not shown) to $\begin{bmatrix} 1 & 0 \\ ad bc \end{bmatrix} \begin{bmatrix} \frac{d}{ad bc} & \frac{-b}{ad bc} \\ \frac{-c}{ad bc} & \frac{a}{ad bc} \end{bmatrix} = (\mathbf{I} | \mathbf{A}^{-1})$ where $\mathbf{A}^{-1} = \frac{1}{ad bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$.
- 2. In each case, the inverse reverses the corresponding row operation:
 - (i) $\mathbf{P}_{ij}^{-1} = \mathbf{I} + \frac{(\mathbf{e}_i \mathbf{e}_j)(\mathbf{e}_i \mathbf{e}_j)^{\mathrm{T}}}{1 (\mathbf{e}_i \mathbf{e}_j)^{\mathrm{T}}(\mathbf{e}_i \mathbf{e}_j)} = \mathbf{I} (\mathbf{e}_i \mathbf{e}_j)(\mathbf{e}_i \mathbf{e}_j)^{\mathrm{T}} = \mathbf{P}_{ij}$. That is, the inverse of **P** also exchanges rows i and i
 - of \mathbf{P}_{ij} also exchanges rows *i* and *j*.

(ii) If
$$\mathbf{D}_i = \mathbf{I} - (1 - \mathbf{e}_i \mathbf{e}_i^{\mathrm{T}}$$
, then \mathbf{D}_i multiplies row *i* by . We have
 $\mathbf{D}_i^{-1} = \mathbf{I} + \frac{(1 - \mathbf{e}_i \mathbf{e}_i^{\mathrm{T}})}{1 - (1 - \mathbf{e}_i^{\mathrm{T}} \mathbf{e}_i^{\mathrm{T}}} = \mathbf{I} - 1 - \frac{1}{2} \mathbf{e}_i \mathbf{e}_i^{\mathrm{T}}$. That is, $\mathbf{D}_i^{-1} \underline{\text{divides}}$ row *i* by .

(iii) If
$$\mathbf{E}_{ij} = \mathbf{I} + \mathbf{e}_j \mathbf{e}_i^{\mathrm{T}}$$
, then times row *i* is added to row *j*. We have

$$\mathbf{E}_{ij}^{-1} = \left[\mathbf{I} - (-)\mathbf{e}_j \mathbf{e}_i^{\mathrm{T}}\right]^{-1} = \mathbf{I} + \frac{-\mathbf{e}_j \mathbf{e}_i^{\mathrm{T}}}{1 - (-)\mathbf{e}_i^{\mathrm{T}} \mathbf{e}_j} = \mathbf{I} + (-)\mathbf{e}_j \mathbf{e}_i^{\mathrm{T}}$$
. That is, \mathbf{E}_{ij}^{-1} subtracts

times row *i* from row *j*.

- 3. The following give some possibilities (many other answers are correct for parts a, b, and c):
 - (a) Suppose A is nonsingular. Then $\mathbf{B} = -\mathbf{A}$ is also nonsingular (since a scalar multiple of a nonsingular matrix is nonsingular) but $\mathbf{A} + \mathbf{B} = \mathbf{A} \mathbf{A} = \mathbf{0}$ is clearly not invertible.
 - (b) The matrix $\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ is singular since it is in row echelon form and has only one pivot. Likewise, the matrix $\mathbf{B} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ is singular since a row exchange

shows it has a only one pivot. But $\mathbf{A} + \mathbf{B} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ has rank = 2 and is thus invertible.

- (c) Both $\mathbf{A} = \mathbf{I}$ and $\mathbf{B} = 2\mathbf{I}$ are obviously nonsingular. $\mathbf{A} + \mathbf{B} = 3\mathbf{I}$ is also nonsingular.
- (d) Since \mathbf{A}^{-1} , \mathbf{B}^{-1} , and $\mathbf{A}+\mathbf{B}$ are all nonsingular matrices by assumption, then $\mathbf{B}^{-1} + \mathbf{A}^{-1} = \mathbf{A}^{-1} (\mathbf{A} + \mathbf{B}) \mathbf{B}^{-1}$ is the product of nonsingular matrices and is thus nonsingular as well. $(\mathbf{B}^{-1} + \mathbf{A}^{-1})^{-1} = [\mathbf{A}^{-1} (\mathbf{A} + \mathbf{B}) \mathbf{B}^{-1}]^{-1} = \mathbf{B} (\mathbf{A} + \mathbf{B})^{-1} \mathbf{A}$.
- 4. $_{\mathbf{A}} = \frac{4}{b} + 4 + b$, $_{\mathbf{B}} = \frac{4}{b} + 4 + b$, $_{\mathbf{C}} = \frac{4}{b}$, and $_{\mathbf{D}} = \frac{4}{b^2} + \frac{4}{b} + 1$. Since 0 < b < 1, we have $_{\mathbf{D}} > _{\mathbf{A}} = _{\mathbf{B}} > _{\mathbf{C}}$. Matrix **D** is an order of magnitude more ill conditioned than the other matrices. Matrix **C** is only marginally better conditioned than **A** and **B**.