Key to Problem Set \#3

1. (a) For any linear transformation \mathbf{T} and basis $C=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$, the i th column of the coordinate matrix $[\mathbf{T}]_{C}$ consists of the coordinates of $\mathbf{T}\left(\mathbf{v}_{i}\right)$ with respect to the basis C, where \mathbf{v}_{i} is the i th basis vector. For the identity transformation, $\mathbf{I}\left(\mathbf{v}_{i}\right)=\mathbf{v}_{i}$ $=0 \cdot \mathbf{v}_{1}+\cdots+0 \cdot \mathbf{v}_{i-1}+1 \cdot \mathbf{v}_{i}+0 \cdot \mathbf{v}_{i+1}+\cdots 0 \cdot \mathbf{v}_{n}$. Thus, the i th column of $[\mathbf{I}]_{C}=\mathbf{e}_{i}$ for $i=1, \ldots, n$ which implies that $[\mathbf{I}]_{C}=\mathbf{I}_{n}$. This argument holds when $C=B$ and when $C=B^{\prime}$.
(b) The j th column of $[\mathbf{I}]_{B B^{\prime}}$ contains the coefficients of \mathbf{e}_{j} when expanded with respect to the basis B^{\prime}, that is, the coefficients $x_{i j}$ in the expansion $\mathbf{e}_{j}=$ $x_{1 j} \mathbf{u}_{1}+x_{2 j} \mathbf{u}_{2}+\cdots+x_{n j} \mathbf{u}_{n}$. If $\mathbf{A}=\left[\mathbf{u}_{1}\left|\mathbf{u}_{2}\right| \cdots \mid \mathbf{u}_{n}\right]$ and $\mathbf{x}_{j}=\left[x_{i j}\right]$, then the coefficients satisfy $\mathbf{A} \mathbf{x}_{j}=\mathbf{e}_{j} \Rightarrow \mathbf{x}_{j}=\mathbf{A}^{-1} \mathbf{e}_{j}\left(\mathbf{A}_{n \times n}\right.$ must be nonsingular since B^{\prime} is a basis for $\left.\mathfrak{R}^{n}\right) \Rightarrow \mathbf{x}_{j}$ is the j th column of \mathbf{A}^{-1}. Thus, $[\mathbf{I}]_{B B^{\prime}}=\mathbf{A}^{-1}$.
(c) $[\mathbf{I}]_{B^{\prime} B}=\left\{[\mathbf{I}]_{B B^{\prime}}\right\}^{-1}=\left\{\mathbf{A}^{-1}\right\}^{-1}=\mathbf{A}=\left[\mathbf{u}_{1}\left|\mathbf{u}_{2}\right| \cdots \mid \mathbf{u}_{n}\right]$.
2. (a) $[T]_{B}=\left(\begin{array}{cc}3 & 0 \\ 0 & 11\end{array}\right)$
(b) $[x]_{B}=\binom{3}{-1} \Rightarrow[T(x)]_{B}=\left(\begin{array}{rr}3 & 0 \\ 0 & 11\end{array}\right)\binom{3}{-1}=\binom{9}{-11}$. Thus, $T(x)=9 e^{2 t}-11 e^{-2 t}$.
(c) $[\mathbf{I}]_{B B^{\prime}}=\left(\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right)$
(d) $[T]_{B}=\left(\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right)\left(\begin{array}{rr}3 & 0 \\ 0 & 11\end{array}\right)\left(\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right)^{-1}=\left(\begin{array}{rr}7 & -4 \\ -4 & 7\end{array}\right)$
3. Let $\mathbf{Q}=\mathbf{B}$. Since, by assumption, \mathbf{B} is nonsingular, we have $\mathbf{Q}^{-1}(\mathbf{B A}) \mathbf{Q}=\mathbf{B}^{-1}(\mathbf{B A}) \mathbf{B}=$ $\mathbf{B}^{-1} \mathbf{B A B}=\mathbf{I} \mathbf{A B}=\mathbf{A B}$. So there exists a nonsingular matrix \mathbf{Q} such that $\mathbf{A B}=$ $\mathbf{Q}^{-1}(\mathbf{B A}) \mathbf{Q}$ and thus $\mathbf{A B}$ is similar to $\mathbf{B A}$.
4. By the CBS inequality, $\left|\mathbf{a}^{\mathrm{T}} \mathbf{b}\right| \leq\left|\mathbf{a}\|\cdot \mid \mathbf{b}\|\right.$. But $\mathbf{a}^{\mathrm{T}} \mathbf{b}=2 \sqrt{x y}$,
$\mid \mathbf{a} \|=\sqrt{(\sqrt{x})^{2}+(\sqrt{y})^{2}}=\sqrt{x+y}$, and $\mid \boldsymbol{b} \|=\sqrt{(\sqrt{y})^{2}+(\sqrt{x})^{2}}=\sqrt{x+y}$. So the CBS inequality is (taking positive square roots) $2 \sqrt{x y} \leq \sqrt{x+y} \cdot \sqrt{x+y}$ or $\sqrt{x y} \leq \frac{1}{2}(x+y)$. That is, the geometric mean of two numbers is never larger than their arithmetic mean.
