Key to Problem Set #3

- 1. (a) For any linear transformation **T** and basis C = {v₁, v₂,...,v_n}, the *i*th column of the coordinate matrix [**T**]_C consists of the coordinates of **T**(v_i) with respect to the basis C, where v_i is the *i*th basis vector. For the identity transformation, **I**(v_i) = v_i = 0 v₁ + ... + 0 v_{i-1} + 1 v_i + 0 v_{i+1} + ... 0 v_n. Thus, the *i*th column of [**I**]_C = e_i for *i* = 1, ..., *n* which implies that [**I**]_C = **I**_n. This argument holds when C = B and when C = B'.
 - (b) The *j*th column of $[\mathbf{I}]_{BB'}$ contains the coefficients of \mathbf{e}_j when expanded with respect to the basis *B*', that is, the coefficients x_{ij} in the expansion $\mathbf{e}_j = x_{1j}\mathbf{u}_1 + x_{2j}\mathbf{u}_2 + \dots + x_{nj}\mathbf{u}_n$. If $\mathbf{A} = [\mathbf{u}_1 | \mathbf{u}_2 | \dots | \mathbf{u}_n]$ and $\mathbf{x}_j = [x_{ij}]$, then the coefficients satisfy $\mathbf{A}\mathbf{x}_j = \mathbf{e}_j$ $\mathbf{x}_j = \mathbf{A}^{-1}\mathbf{e}_j$ ($\mathbf{A}_{n \times n}$ must be nonsingular since *B*' is a basis for \mathbf{a}_j is the *j*th column of \mathbf{A}^{-1} . Thus, $[\mathbf{I}]_{BB'} = \mathbf{A}^{-1}$.

(c)
$$[\mathbf{I}]_{BB} = \{ [\mathbf{I}]_{BB} \}^{-1} = \{ \mathbf{A}^{-1} \}^{-1} = \mathbf{A} = [\mathbf{u}_1 | \mathbf{u}_2 | \cdots | \mathbf{u}_n].$$

2. (a)
$$[T]_{B} = \begin{cases} 3 & 0 \\ 0 & 11 \end{cases}$$

(b) $[x]_{B} = \begin{cases} 3 & 0 \\ -1 & [T(x)]_{B} \end{cases} = \begin{cases} 3 & 0 & 3 \\ 0 & 11 & -1 \end{cases} = \begin{cases} 9 \\ -11 \end{cases}$. Thus, $T(x) = 9e^{2t} - 11e^{-2t}$.
(c) $[\mathbf{I}]_{BB} = \begin{cases} 1 & -1 \\ 1 & 1 \end{cases}$
(d) $[T]_{B} = \begin{cases} 1 & -1 & 3 & 0 & 1 & -1 \\ 1 & 1 & 0 & 11 & 1 \end{cases} = \begin{cases} 7 & -4 \\ -4 & 7 \end{cases}$

- 3. Let $\mathbf{Q} = \mathbf{B}$. Since, by assumption, **B** is nonsingular, we have $\mathbf{Q}^{-1}(\mathbf{B}\mathbf{A})\mathbf{Q} = \mathbf{B}^{-1}(\mathbf{B}\mathbf{A})\mathbf{B} = \mathbf{B}^{-1}\mathbf{B}\mathbf{A}\mathbf{B} = \mathbf{I}\mathbf{A}\mathbf{B} = \mathbf{A}\mathbf{B}$. So there exists a nonsingular matrix **Q** such that $\mathbf{A}\mathbf{B} = \mathbf{Q}^{-1}(\mathbf{B}\mathbf{A})\mathbf{Q}$ and thus $\mathbf{A}\mathbf{B}$ is similar to $\mathbf{B}\mathbf{A}$.
- 4. By the CBS inequality, $|\mathbf{a}^{\mathrm{T}}\mathbf{b}| = |\mathbf{a}|| \|\mathbf{b}||$. But $\mathbf{a}^{\mathrm{T}}\mathbf{b} = 2\sqrt{xy}$, $\|\mathbf{a}\| = \sqrt{(\sqrt{x})^2 + (\sqrt{y})^2} = \sqrt{x+y}$, and $\|\mathbf{b}\| = \sqrt{(\sqrt{y})^2 + (\sqrt{x})^2} = \sqrt{x+y}$. So the CBS inequality is (taking positive square roots) $2\sqrt{xy} = \sqrt{x+y} \sqrt{x+y}$ or $\sqrt{xy} = \frac{1}{2}(x+y)$. That is, the geometric mean of two numbers is never larger than their arithmetic mean.