Key to Problem Set \#4

1. (a) Obviously, $|f(t)| \geq 0$ for all $t \in[0,1] \Rightarrow \mid f \| \geq 0$. If $f(t)=0$ for all $t \in[0,1]$ then clearly $\backslash f \|=0$. If $\mid f \|=0$, then $0=\max _{t \in[0,1]}|f(t)| \geq|f(t)| \geq 0 \Rightarrow|f(t)|=0$ for all $t \in[0,1] \Rightarrow f(t)=0$ for all $t \in[0,1]$. Thus, $\boldsymbol{\|} \boldsymbol{\|}=0 \Leftrightarrow f(t) \equiv 0$. Now let α be a real scalar and consider $\left|\alpha f\left\|=\max _{t \in[0,1]}|\alpha f(t)|=|\alpha| \max _{t \in[0,1]}|f(t)|=\mid \alpha\right\| f \|\right.$. Finally, $\|f+g\|$ $=\max _{t \in[0,1]}|f(t)+g(t)| \leq \max _{t \in[0,1]}(|f(t)|+|g(t)|) \leq \max _{t \in[0,1]}|f(t)|+\max _{t \in[0,1]}|g(t)|=|f|+\| g \mid$ which proves the triangle inequality.
(b) There is an inner product if and only if $\|f+g\|^{2}+\|f-g\|^{2}=2\left(\|f\|^{2}+\|g\|^{2}\right)$ for all f and g in V. Consider $f(t)=1$ and $g(t)=t .\|f+g\|^{2}=4,\|f-g\|^{2}=1,\|f\|=1$, and $\|g\|=1$. Thus $\|f+g\|^{2}+\|f-g\|^{2}=5 \neq 2\left(\|f\|^{2}+\|g\|^{2}\right)=4$ which implies that there is no inner product on V such that $\langle f, f\rangle=|f|^{2}$ for all $f \in V$.
2. (a) $\theta=\arccos \left(\frac{\int_{0}^{1}(1+t)\left(1+t^{2}\right) d t}{\sqrt{\int_{0}^{1}(1+t)^{2} d t} \sqrt{\int_{0}^{1}\left(1+t^{2}\right)^{2} d t}}\right)=\arccos \left(\frac{25 / 12}{\sqrt{7 / 3} \sqrt{28 / 15}}\right) \approx .059$ radians.
(b) $v_{1}(t)=1, v_{2}(t)=\sqrt{3}(2 t-1)$, and $v_{3}(t)=\sqrt{5}\left(6 t^{2}-6 t+1\right)$.
(c) $1+t^{2}=\frac{4}{3} \cdot 1+\frac{1}{2 \sqrt{3}} \cdot \sqrt{3}(2 t-1)+\frac{1}{6 \sqrt{5}} \cdot \sqrt{5}\left(6 t^{2}-6 t+1\right)$.
3. (a) Let $\mathbf{v} \in V_{0}$ and let α be a nonzero scalar. Then $\langle\alpha \mathbf{v}, \mathbf{p}\rangle=\bar{\alpha}\langle\mathbf{v}, \mathbf{p}\rangle=0 \Rightarrow \alpha \mathbf{v} \in V_{0}$. Suppose $\mathbf{v}, \mathbf{w} \in V_{0}$. Then $\langle\mathbf{v}+\mathbf{w}, \mathbf{p}\rangle=\langle\mathbf{v}, \mathbf{p}\rangle+\langle\mathbf{w}, \mathbf{p}\rangle=0 \Rightarrow \mathbf{v}+\mathbf{w} \in V_{0}$. Therefore, V_{0} is a subspace since it is closed under scalar multiplication and vector addition.
(b) Let $B=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}\right\}$ be a basis for V and assume that $\left\langle\mathbf{p}, \mathbf{u}_{1}\right\rangle \neq 0$. (This must be true for some basis vector since $\mathbf{p} \in V$, and we are thus assuming without loss of generality that B is ordered so that \mathbf{p} is not orthogonal to the first basis vector.)

Since B is a basis for V and $\left\{\mathbf{p}, \mathbf{u}_{1}\right\rangle \neq 0$, we can use the Gram-Schmidt process starting with the set B-but with \mathbf{p} replacing \mathbf{u}_{1}-to produce an orthonormal basis B^{\prime} for $V: B^{\prime}=\left\{\frac{\mathbf{p}}{\|\mathbf{p}\|}, \mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n-1}\right\}$, where the \mathbf{v}_{i} are the vectors generated by the Gram-Schmidt procedure. Claim: the set $B_{0}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n-1}\right\}$ is a basis for V_{0}. This immediately implies that $\operatorname{dim}\left(V_{0}\right)=n-1$. To prove the claim, we need to show that B_{0} is linearly independent and spans V_{0}. The linear independence follows from the fact that B_{0} is, by construction, an orthonormal set. To show that B_{0} spans V_{0}, consider $\mathbf{w} \in V_{0}$. Since \mathbf{w} is also in V and B^{\prime} is an orthonormal basis for V, the Fourier expansion of \mathbf{w} with respect to B^{\prime} is

$$
\begin{aligned}
& \mathbf{w}=\left\langle\mathbf{w}, \frac{\mathbf{p}}{\|\mathbf{p}\|} \backslash \frac{\mathbf{p}}{\|\mathbf{p}\|}+\left\{\mathbf{w}, \mathbf{v}_{1}\right\rangle \mathbf{v}_{1}+\left\{\mathbf{w}, \mathbf{v}_{2}\right\rangle \mathbf{v}_{2}+\cdots+\left\langle\mathbf{w}, \mathbf{v}_{n-1}\right\rangle \mathbf{v}_{n-1}\right. \\
&=\left\{\mathbf{w}, \mathbf{v}_{1}\right\rangle \mathbf{v}_{1}+\left\{\mathbf{w}, \mathbf{v}_{2}\right\rangle \mathbf{v}_{2}+\cdots+\left\{\mathbf{w}, \mathbf{v}_{n-1}\right\rangle \mathbf{v}_{n-1} \\
& \text { because }\{\mathbf{w}, \mathbf{p} /|\mathbf{p}|\rangle=\frac{1}{\|\mathbf{p}\|}\langle\mathbf{w}, \mathbf{p}\rangle=0 . \text { Thus, every } \mathbf{w} \in V_{0} \text { can be written as a }
\end{aligned}
$$

combination of vectors in $B_{0} \Rightarrow V_{0}=\operatorname{span}\left(B_{0}\right)$.

