Math 420

Key to Problem Set #4

- 1. (a) Obviously, |f(t)| = 0 for all t = [0, 1] |f|| = 0. If f(t) = 0 for all t = [0, 1] then clearly ||f|| = 0. If ||f|| = 0, then $0 = \max_{t = [0,1]} |f(t)| = |f(t)| = 0$ for all t = [0, 1] f(t) = 0 for all t = [0, 1]. Thus, ||f|| = 0 f(t) = 0. Now let be a real scalar and consider $||f|| = \max_{t = [0,1]} ||f(t)|| = ||\max_{t = [0,1]} ||f(t)|| = ||||f||$. Finally, ||f + g|| $= \max_{t = [0,1]} ||f(t) + g(t)| = \max_{t = [0,1]} ||f(t)|| + ||g(t)||$ $\max_{t = [0,1]} ||f(t)|| = ||f|| + ||g||$ which proves the triangle inequality.
 - (b) There is an inner product if and only if $\|f + g\|^2 + \|f g\|^2 = 2(\|f\|^2 + \|g\|^2)$ for all fand g in V. Consider f(t) = 1 and g(t) = t. $\|f + g\|^2 = 4$, $\|f - g\|^2 = 1$, $\|f\| = 1$, and $\|g\| = 1$. Thus $\|f + g\|^2 + \|f - g\|^2 = 5$ $2(\|f\|^2 + \|g\|^2) = 4$ which implies that there is no inner product on V such that $\langle f, f \rangle = \|f\|^2$ for all f = V.

2. (a) =
$$\arccos \frac{\int_{0}^{1} (1+t)(1+t^{2})dt}{\sqrt{\int_{0}^{1} (1+t)^{2} dt} \sqrt{\int_{0}^{1} (1+t^{2})^{2} dt}} = \arccos \frac{25/12}{\sqrt{7/3}\sqrt{28/15}}$$
 .059 radians.
(b) $v_{1}(t) = 1$, $v_{2}(t) = \sqrt{3}(2t-1)$, and $v_{3}(t) = \sqrt{5}(6t^{2}-6t+1)$.
(c) $1+t^{2} = \frac{4}{3} + \frac{1}{2\sqrt{3}} \sqrt{3}(2t-1) + \frac{1}{6\sqrt{5}} \sqrt{5}(6t^{2}-6t+1)$.

- 3. (a) Let $\mathbf{v} \quad V_0$ and let be a nonzero scalar. Then $\langle \mathbf{v}, \mathbf{p} \rangle = -\langle \mathbf{v}, \mathbf{p} \rangle = 0$ $\mathbf{v} \quad V_0$. Suppose $\mathbf{v}, \mathbf{w} \quad V_0$. Then $\langle \mathbf{v} + \mathbf{w}, \mathbf{p} \rangle = \langle \mathbf{v}, \mathbf{p} \rangle + \langle \mathbf{w}, \mathbf{p} \rangle = 0$ $\mathbf{v} + \mathbf{w} \quad V_0$. Therefore, V_0 is a subspace since it is closed under scalar multiplication and vector addition.
 - (b) Let $B = {\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_n}$ be a basis for *V* and assume that $\langle \mathbf{p}, \mathbf{u}_1 \rangle = 0$. (This must be true for some basis vector since $\mathbf{p} = V$, and we are thus assuming without loss of generality that *B* is ordered so that \mathbf{p} is not orthogonal to the first basis vector.)

Since *B* is a basis for *V* and $\langle \mathbf{p}, \mathbf{u}_1 \rangle$ 0, we can use the Gram-Schmidt process starting with the set *B*—but with **p** replacing \mathbf{u}_1 —to produce an orthonormal basis *B* for *V*: $B = \frac{\mathbf{p}}{\|\mathbf{p}\|}, \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{n-1}$, where the \mathbf{v}_i are the vectors generated by the

Gram-Schmidt procedure. Claim: the set $B_0 = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{n-1}\}$ is a basis for V_0 . This immediately implies that $\dim(V_0) = n - 1$. To prove the claim, we need to show that B_0 is linearly independent and spans V_0 . The linear independence follows from the fact that B_0 is, by construction, an orthonormal set. To show that B_0 spans V_0 , consider $\mathbf{w} = V_0$. Since \mathbf{w} is also in V and B is an orthonormal basis for V, the Fourier expansion of \mathbf{w} with respect to B is

$$\mathbf{w} = \left\langle \mathbf{w}, \frac{\mathbf{p}}{\|\mathbf{p}\|} \right\rangle \frac{\mathbf{p}}{\|\mathbf{p}\|} + \left\langle \mathbf{w}, \mathbf{v}_{1} \right\rangle \mathbf{v}_{1} + \left\langle \mathbf{w}, \mathbf{v}_{2} \right\rangle \mathbf{v}_{2} + \dots + \left\langle \mathbf{w}, \mathbf{v}_{n-1} \right\rangle \mathbf{v}_{n-1}$$
$$= \left\langle \mathbf{w}, \mathbf{v}_{1} \right\rangle \mathbf{v}_{1} + \left\langle \mathbf{w}, \mathbf{v}_{2} \right\rangle \mathbf{v}_{2} + \dots + \left\langle \mathbf{w}, \mathbf{v}_{n-1} \right\rangle \mathbf{v}_{n-1}$$
because $\left\langle \mathbf{w}, \mathbf{p} \right\rangle \|\mathbf{p}\| = \frac{1}{2} \left\langle \mathbf{w}, \mathbf{p} \right\rangle = 0$ Thus every \mathbf{w} . V_{2} can be v

because $\langle \mathbf{w}, \mathbf{p}/||\mathbf{p}| \rangle = \frac{1}{||\mathbf{p}||} \langle \mathbf{w}, \mathbf{p} \rangle = 0$. Thus, every $\mathbf{w} = V_0$ can be written as a combination of vectors in $B_0 = V_0 = \operatorname{span}(B_0)$.