Key to Problem Set #5

1. (a) The 4 expected outputs are $(c \ c \ c \ c)^{T} = (1 \ 1 \ 1 \ 1)^{T} (c) = \mathbf{A}\mathbf{x}$. Equating these to the 4 actual outputs $(b_1 \ b_2 \ b_3 \ b_4)^{T} = \mathbf{b}$ gives the linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$.

(b)
$$\mathbf{P} = \mathbf{A}(\mathbf{A}^{\mathrm{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathrm{T}} = \frac{1}{1} \begin{pmatrix} 4 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \models \frac{1}{4} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix} \models \frac{1}{4} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

(c) $\overline{c} = (\mathbf{A}^{\mathrm{T}} \mathbf{A})^{-1} \mathbf{A}^{\mathrm{T}} \mathbf{b} = \frac{1}{4} (b_1 + b_2 + b_3 + b_4)$. That is, the best least-squares estimate of *c* is the simple average of the observations.

- 2. Let *n* be the size of \mathbf{I}_n . If n = 1, $\mathbf{I}_1 = (1)$ det $(\mathbf{I}_1) = 1$ by definition of the determinant of a 1 × 1 matrix. Now assume det $(\mathbf{I}_n) = 1$ and consider det (\mathbf{I}_{n+1}) . Expanding along the first row of \mathbf{I}_{n+1} gives det $(\mathbf{I}_{n+1}) = [\mathbf{I}_{n+1}]_{11}(-1)^{(1+1)}$ det $(\mathbf{M}_{11}) + [\mathbf{I}_{n+1}]_{12}(-1)^{(1+2)}$ det $(\mathbf{M}_{12}) + \ldots + [\mathbf{I}_{n+1}]_{1(n+1)}(-1)^{(1+(n+1))}$ det $(\mathbf{M}_{1(n+1)}) = 1$ det (\mathbf{M}_{11}) since the first element in row 1 of \mathbf{I}_{n+1} is unity and is the only nonzero element in that row. But \mathbf{M}_{11} is formed by deleting the first row and first column of \mathbf{I}_{n+1} $\mathbf{M}_{11} = \mathbf{I}_n$ det $(\mathbf{M}_{11}) = det(\mathbf{I}_n) = 1$ det $(\mathbf{I}_n) = 1$ det $(\mathbf{I}_{n+1}) = 1$ 1 = 1. Thus, by induction, the determinant of any identity matrix equals one.
- 3. $(1-t^2)^3$
- 4. (a) $0 = \det(\mathbf{A}^{\mathrm{T}} \mathbf{I}) = \det([\mathbf{A}^{\mathrm{T}} \mathbf{I}]^{\mathrm{T}}) = \det(\mathbf{A} \mathbf{I})$. Thus $(\mathbf{A}^{\mathrm{T}})$ iff (\mathbf{A}) . (b) $\mathbf{y}^{*}\mathbf{A} = \mu\mathbf{y}^{*}$ $\mathbf{y}^{*}(\mathbf{A} - \mu\mathbf{I}) = \mathbf{0}$ $\mathbf{0} = (\mathbf{A} - \mu\mathbf{I})^{*}\mathbf{y} = (\mathbf{A}^{*} - \overline{\mu}\mathbf{I})\mathbf{y} = (\mathbf{A}^{\mathrm{T}} - \overline{\mu}\mathbf{I})\mathbf{y}$ since **A** is real. Thus, μ is a "left-hand" eigenvalue of $\mathbf{A} = \overline{\mu} \quad (\mathbf{A}^{\mathrm{T}}) = \overline{\mu} \quad (\mathbf{A})$ (using part a) μ (\mathbf{A}) (using the hint).
 - (c) Consider $\langle \mathbf{y}, \mathbf{A}\mathbf{x} \rangle = \mathbf{y}^* (\mathbf{A}\mathbf{x}) = (\mathbf{y}^* \mathbf{A}) \mathbf{x} = {}_1 \mathbf{y}^* \mathbf{x} = {}_1 \langle \mathbf{y}, \mathbf{x} \rangle$. But we also have $\langle \mathbf{y}, \mathbf{A}\mathbf{x} \rangle = \langle \mathbf{y}, {}_2 \mathbf{x} \rangle = {}_2 \langle \mathbf{y}, \mathbf{x} \rangle$. Thus $\langle \mathbf{y}, \mathbf{A}\mathbf{x} \rangle = {}_1 \langle \mathbf{y}, \mathbf{x} \rangle = {}_2 \langle \mathbf{y}, \mathbf{x} \rangle$ $({}_1 - {}_2) \langle \mathbf{y}, \mathbf{x} \rangle = {}_0 \quad \langle \mathbf{y}, \mathbf{x} \rangle = {}_0 \quad \mathbf{y} \quad \mathbf{x}.$