Key to Problem Set \#5

1. (a) The 4 expected outputs are $(c c c c)^{\mathrm{T}}=\left(\begin{array}{lll}1 & 1 & 1\end{array} 1\right)^{\mathrm{T}}(\mathrm{c})=\mathbf{A x}$. Equating these to the 4 actual outputs $\left(b_{1} b_{2} b_{3} b_{4}\right)^{\mathrm{T}}=\mathbf{b}$ gives the linear system $\mathbf{A x}=\mathbf{b}$.

(c) $\bar{c}=\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}\right)^{-1} \mathbf{A}^{\mathrm{T}} \mathbf{b}=\frac{1}{4}\left(b_{1}+b_{2}+b_{3}+b_{4}\right)$. That is, the best least-squares estimate of c is the simple average of the observations.
2. Let n be the size of \mathbf{I}_{n}. If $n=1, \mathbf{I}_{1}=(1) \Rightarrow \operatorname{det}\left(\mathbf{I}_{1}\right)=1$ by definition of the determinant of a 1×1 matrix. Now assume $\operatorname{det}\left(\mathbf{I}_{n}\right)=1$ and consider $\operatorname{det}\left(\mathbf{I}_{n+1}\right)$. Expanding along the first row of $\mathbf{I}_{n+1} \operatorname{gives} \operatorname{det}\left(\mathbf{I}_{n+1}\right)=\left[\mathbf{I}_{n+1}\right]_{11}(-1)^{(1+1)} \operatorname{det}\left(\mathbf{M}_{11}\right)+\left[\mathbf{I}_{n+1}\right]_{12}(-1)^{(1+2)} \operatorname{det}\left(\mathbf{M}_{12}\right.$ $)+\ldots+\left[\mathbf{I}_{n+1}\right]_{1(n+1)}(-1)^{(1+(n+1))} \operatorname{det}\left(\mathbf{M}_{1(n+1)}\right)=1 \cdot \operatorname{det}\left(\mathbf{M}_{11}\right)$ since the first element in row 1 of \mathbf{I}_{n+1} is unity and is the only nonzero element in that row. But \mathbf{M}_{11} is formed by deleting the first row and first column of $\mathbf{I}_{n+1} \Rightarrow \mathbf{M}_{11}=\mathbf{I}_{n} \Rightarrow \operatorname{det}\left(\mathbf{M}_{11}\right)=\operatorname{det}\left(\mathbf{I}_{n}\right)=1 \Rightarrow$ $\operatorname{det}\left(\mathbf{I}_{n+1}\right)=1 \cdot 1=1$. Thus, by induction, the determinant of any identity matrix equals one.
3. $\left(1-t^{2}\right)^{3}$
4. (a) $0=\operatorname{det}\left(\mathbf{A}^{\mathrm{T}}-\lambda \mathbf{I}\right)=\operatorname{det}\left(\left[\mathbf{A}^{\mathrm{T}}-\lambda \mathbf{I}\right]^{\mathrm{T}}\right)=\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})$. Thus $\lambda \in \sigma\left(\mathbf{A}^{\mathrm{T}}\right)$ iff $\lambda \in \sigma(\mathbf{A})$.
(b) $\mathbf{y}^{*} \mathbf{A}=\mu \mathbf{y}^{*} \Leftrightarrow \mathbf{y}^{*}(\mathbf{A}-\mu \mathbf{I})=\mathbf{0} \Leftrightarrow \mathbf{0}=(\mathbf{A}-\mu \mathbf{I})^{*} \mathbf{y}=\left(\mathbf{A}^{*}-\bar{\mu} \mathbf{I}\right) \mathbf{y}=\left(\mathbf{A}^{\mathrm{T}}-\bar{\mu} \mathbf{I}\right) \mathbf{y}$ since \mathbf{A} is real. Thus, μ is a "left-hand" eigenvalue of $\mathbf{A} \Leftrightarrow \bar{\mu} \in \sigma\left(\mathbf{A}^{\mathrm{T}}\right) \Leftrightarrow \bar{\mu} \in \sigma(\mathbf{A})$ (using part a) $\Leftrightarrow \mu \in \sigma(\mathbf{A})$ (using the hint).
(c) Consider $\langle\mathbf{y}, \mathbf{A x}\rangle=\mathbf{y}^{*}(\mathbf{A x})=\left(\mathbf{y}^{*} \mathbf{A}\right) \mathbf{x}=\lambda_{1} \mathbf{y}^{*} \mathbf{x}=\lambda_{1}\langle\mathbf{y}, \mathbf{x}\rangle$. But we also have $\langle\mathbf{y}, \mathbf{A x}\rangle=\left\langle\mathbf{y}, \lambda_{2} \mathbf{x}\right\rangle=\lambda_{2}\langle\mathbf{y}, \mathbf{x}\rangle$. Thus $\langle\mathbf{y}, \mathbf{A x}\rangle=\lambda_{1}\langle\mathbf{y}, \mathbf{x}\rangle=\lambda_{2}\langle\mathbf{y}, \mathbf{x}\rangle \Rightarrow\left(\lambda_{1}-\lambda_{2}\right)\langle\mathbf{y}, \mathbf{x}\rangle$ $=0 \Rightarrow\langle\mathbf{y}, \mathbf{x}\rangle=0 \Rightarrow \mathbf{y} \perp \mathbf{x}$.
