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I do not believe that the accident of birth makes
people sisters and brothers. It makes them sib-
lings. Gives them mutuality of parentage.
. – Maya Angelou

Abstract

New technologies for collecting genotypic data from natural populations open the
possibilities of investigating many fundamental biological phenomena, including be-
havior, mating systems, heritabilities of adaptive traits, kin selection, and dispersal
patterns. The power and potential of genotypic information often rests in the ability to
reconstruct genealogical relationships among individuals. These relationships include
parentage, full and half-sibships, and higher order aspects of pedigrees. Some areas
of genealogical inference, such as parentage, have been studied extensively. Although
methods for pedigree inference and kinship analysis exist, most make assumptions that
do not hold for wild populations of animals and plants.

In this chapter, we focus on the full sibling relationship and first review existing
methods for full sibship reconstructions from microsatellite genetic markers. We then
describe our new combinatorial methods for sibling reconstruction based on simple
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Mendelian laws and its extension even in the presence of errors in the data. We also
describe a generic consensus method for combining sibling reconstruction results from
other methods. We present experimental comparison of the best existing approaches
on both biological and simulated data. We discuss relative merits and drawbacks of
existing methods and suggest a practical approach for reconstructing sibling relation-
ships in wild populations.

1. Introduction

Kinship analysis of wild populations is often an important and necessary component of
understanding an organism’s biology and ecology. Population biologists studying plants
and animals in the field want to know how individuals survive, acquire mates, reproduce,
and disperse to new populations. Often these parameters are difficult or impossible to infer
from observational studies alone, and the establishment of kinship patterns (parentage or
sibling relationships, for example) can be extremely useful. The powerful toolbox provided
by advances in molecular biology and genome analysis has offered population biologists a
growing list of possibilities for inferring kinship. Paternity analysis in wild populations be-
came common upon the arrival of the first DNA-based markers in the mid-1980s, when
multi-locus DNA fingerprinting methods became available. Probably the most notable
discoveries came from studies of avian mating systems. Multi-locus DNA fingerprinting
revealed that many bird species that were behaviorally monogamous were in fact often re-
productively promiscuous. Females of such species would furtively engage in extra-pair
copulations, apparently unbeknownst to their cuckolded male social partners. In fact, the
frequency of extra-pair fertilizations (up to 50% in some species) led avian behavioral ecol-
ogist to distinguish between social mating systems and genetic mating systems (reviewed
in [55]). The invention of the polymerase chain reaction (PCR) [38] quickly led to the re-
placement of multi-locus fingerprinting with single-locus PCR-based techniques by the mid
1990s [3, 39]. Microsatellites (also known as SSRs and STRs) were the first and still are
the most widespread molecular marker for inferring kinship in wild populations, although
their development in each new species studied is often a time-consuming and expensive
obstacle. Microsatellite genotypes, which could be obtained from tiny amounts of blood,
tissue, or even feces, have been used to infer parentage, particularly paternity, in a large
number of wild species. Notable examples include the study of pollination patterns in for-
est trees [13, 14, 47], identifying fathers of the famed chimpanzees of Gombe [12], and
evaluating the success of alternative mating strategies used by male big horn sheep [24].
A breakthrough in paternity assignment came with the release of the software program
CERVUS [30] that provided a user-friendly Windows-based program that employed a sta-
tistical likelihood method to assign paternity to a candidate father with an estimated level
of statistical confidence.

There are many cases where field studies can sample cohorts of offspring yet sampling
putative parents is problematic. In these cases, sibling relationships (sibship) reconstruc-
tion, rather than parentage assignment, is required. For genetic markers showing Mendelian
inheritance, such as microsatellites, parentage assignment (maternity or paternity) is com-
putationally much simpler than sibship reconstruction. In diploid organisms, a parent and
each offspring must share an allele at every genetic locus (barring rare mutations). On
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the other hand, full siblings will share, on average, half their alleles, but at any one locus,
they may share 0,1, or 2 alleles. Sibling reconstruction methods have lagged behind those
developed for paternity assignment, but several methods of sibling reconstruction are now
available. In this review, we will examine the constraints that Mendelian inheritance dictates
for sibling reconstructing, review the use of microsatellite genotyping in wild populations,
and evaluate alternative genetic markers. We will then review the various methods for full
sibling reconstruction that are currently available and present experimental validation of
various methods using both real biological data and simulated data.

1.1. Microsatellites

While there are several molecular markers used in population genetics, microsatellites are
the most commonly used in kinship studies in wild populations. First discovered in the
late 1980s when genomic sequencing studies began [48, 54], microsatellites are short (one
to six base pairs) simple sequence repeats, such as (CA/GT )

n

or (AGC/TCG)

n

that are
scattered around eukaryotic genomes. A genomic library for a study species is screened
for such repeats and primers for PCR amplification are constructed from the regions flank-
ing the short repeats. Alternatively, microsatellite primers developed for one species may
be used for closely related species. For example, microsatellites developed for humans
amplify homologous loci in chimpanzees [12]. Figure 1 shows a schematic example of a
microsatellite marker with three alleles and the resulting genotypes. Because there is a rel-
atively high rate of mutation for adding or subtracting repeat units, microsatellite loci have
high numbers of alleles and high levels of heterozygosity. PCR-based microsatellite anal-
ysis provides co-dominant, unlinked markers where alleles and genotypes can be scored
precisely by size. These are the characteristics that make them especially useful for esti-
mating kinship and relatedness. There are some technical problems associated with scoring
microsatellites, and any method of sibling reconstruction with microsatellites needs to be
able to accommodate a low frequency of scoring errors or artifacts, in addition to occasional
mutation.

Microsatellites have been successfully applied to a wide range of non-model organisms,
including vertebrates, invertebrates, plants, and fungi, and are used to infer large-scale pop-
ulation structure as well as individual kinship. For kinship studies, microsatellites have
been used more commonly for parentage than for sibship reconstruction, but there are an
increasing number of studies that have attempted to reconstruct sibships with partial or no
parental sampling. In lemon sharks, cohorts of juvenile sharks were sampled annually from
nursery lagoons, and sibship reconstruction was used to infer the mating system and fertility
of adults [17]. Sibship reconstruction was used to infer patterns of brood parasitism for indi-
vidual female cowbirds, who lay their eggs in the nests of other birds [45, 46]. In a study of
wood frogs, tadpoles were sampled from ponds and sibgroups reconstructed to study their
spatial distribution and the potential for kin selection [22]. Such studies have employed a
variety of methods to reconstruct sibling groups from microsatellite data because there was
no widely accepted or easily implemented software available.

In addition to microsatellites, which assay DNA repeat variation, several PCR-based
methods are available to assay variation in DNA sequence. RAPDs (randomly amplified
polymorphic DNA), ISSRs (inter-simple sequence repeats), and AFLPs (amplified frag-
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Figure 1. A schematic example of a microsatellite marker.

ment length polymorphisms) are dominant, multi-locus techniques which are problematic
for kinship inference. SNPs (single nucleotide polymorphisms) are single locus markers
that focus on a variable single nucleotide position in the genome. While they are numerous
in the genome and, once identified, easy to score, they have limitations in the area of kinship
reconstruction. The power to identify related individual depends mainly on the number of
alleles per locus and their heterozygosity. SNPs are usually biallelic, whereas microsatel-
lites may have 10 or more alleles per locus and typically have high heterozygosities. It
appears for at least the next few years, microsatellites will remain the marker of choice for
estimating relatedness in wild populations. We thus focus our efforts on developing and
comparing methods of sibling reconstruction that are applicable to microsatellites or, more
generally, codominant, multiallelic markers.

2. Sibling Reconstruction Problem

In order to reason about the inherent computational properties of the problem of recon-
structing sibling relationships and to compare the accuracy and performance of various
computational methods for solving the problem, we must define it formally. The problem
of siblings reconstruction was first formally defined in [5] and is restated here.

Definition 1. Let U be a population of n diploid individuals of the same generation geno-
typed at at l microsatellite loci:

U = {X1, ...Xn

}, where X
i

= (ha
i1, bi1i, ..., ha

il

, b
il

i)

and a
ij

and b
ij

are the two alleles of the individual i at locus j represented as some identify-
ing string. The goal of the Sibling Reconstruction Problem is to reconstruct the full sibling
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groups (groups of individuals with the same parents). We assume no knowledge of parental
information. Formally, the goal is to find a partition of individuals P1, ...Pm

such that

81 ∑ k ∑ m, 8X
p

,X
q

2 P
k

: Parents(X
p

) = Parents(X
q

)

Note, that we have not defined the function Parents(X). This is a biological objective.
Computational approaches use the formalization of various biological assumptions and con-
straints to achieve a good estimate of the biological sibling relationship. We describe the
fundamental genetic properties that serve as a basis for most computational approaches in
the next section.

3. Genetics of Sibship

3.1. Mendelian Genetics

Mendelian genetics lay down a very simple rule for gene inheritance in diploid organisms:
an offspring inherits one allele from each of its parents for each locus. This introduces two
overlapping necessary (but not sufficient) constraints on full sibling groups in absence of
genotyping errors or mutations: the 4-allele property and the 2-allele property [5, 10].

4-Allele Property: The total number of distinct alleles occurring at any locus may not
exceed 4.

Formally, a set of individuals S µ U has the 4-allele property if

81 ∑ j ∑ l :

ØØØØØ
[

i2S

{a
ij

, b
ij

}

ØØØØØ ∑ 4.

Clearly, the 4-allele property is necessary since a group of siblings can inherit only
combinations of the 4 alleles of their common parents. The 4-allele property is ef-
fective for identifying sibling groups where the data are mostly heterozygous and the
parent individuals share few common alleles. Generally, as in Table 1, a set consisting
of any two individuals trivially satisfies the 4-allele property. The set of individuals
1, 3 and 4 from Table 1 satisfies the 4-allele property. However, the set of individ-
uals 2, 3 and 5 fails to satisfy it as there are five alleles occurring at the first locus:
{12, 28, 56, 44, 51}.

2-Allele Property: There exists an assignment of individual alleles within a locus to ma-
ternal and paternal such that the number of distinct alleles assigned to each parent at
this locus does not exceed 2.

Formally, a set of individuals S µ U has the 2-allele property if for each individual
X

i

in each locus there exists an assignment of a
ij

= c
ij

or b
ij

= c
ij

(and the other
allele assigned to c̄

ij

) such that

81 ∑ j ∑ l :

ØØØØØ
[

i2S

{c
ij

}

ØØØØØ ∑ 2 and

ØØØØØ
[

i2S

{c̄
ij

}

ØØØØØ ∑ 2
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The 2-allele property is clearly stricter than the 4-allele property. Looking at the Table 1,
our previous 4-allele set of individuals 1, 3 and 4 fails to satisfy the 2-allele property since
there are more than two alleles on the left side of locus 1: {44, 28, 13}. Moreover, there is
no swapping of the left and right sides of alleles that will bring down the number of alleles
on each side to two: individuals 1 and 4 with their alleles 44/44 and 13/13 already fill the
capacity. Again, any two individuals trivially satisfy the 2-allele property.

Table 1. An example of input data for the sibling reconstruction problem. The five
individuals have been sampled at two genetic loci. Each allele is represented by a

number. Same numbers within a locus represent the same alleles.

Individual Alleles ha, bi at locus 1 Alleles ha, bi at locus 2
1 44, 44 55, 27
2 12, 56 18, 39
3 28, 44 55, 18
4 13, 13 39, 27
5 28, 51 18, 39

Assuming the order of the parental alleles is always the same in the offspring (i.e. the
maternal allele is always on the same side), the 2-allele property is equivalent to a bi-
ologically consistent full sibling relationship. The parental allele order, however, is not
preserved, and an interesting problem arises: given a set of individuals S that satisfies the
4-allele property, does there exist a series of allele reorderings within some loci of individ-
uals in S so that after those reorderings S satisfies the 2-allele property? For example, in
Table 1, the individuals 1, 3, and 5 have more than two alleles on the right side of locus 2:
{27, 18, 39}. However, switching the alleles 18 and 39 at locus 2 in the individual 5 will
bring the number of alleles on either side down to two. Since the number of alleles on either
side of locus 1 is also two, the set of individuals 1, 3, and 5 satisfies the 2-allele property.

In [10] we show the connection between the two properties that we restate here:

Theorem 1. Let a be the number of distinct alleles present in a given locus and R be the
number of distinct alleles that either appear with three different alleles in this locus or are
homozygous (appear with itself). Then, given a set of individuals with the 4-allele property,
there exists a series of allele reorderings within loci resulting in a set that satisfies the 2-
allele property if and only if for all the loci in the set

a + R ∑ 4.

In our example of individuals 1, 3, and 5 in locus 1, a = |{44, 28, 51}| = 3 and R = 1

since each allele is paired up only with at most two different alleles but 44 is a homozygote.
In locus 2, a = |{55, 27, 18, 39}| = 4 but R = 0 since there are no homozygote alleles and
no allele appears with more than two different alleles. Thus, the set of individuals 1, 3, and
5 satisfies a + R ∑ 4 for all loci and, hence, the 2-allele property.

The 2-allele property takes into account the fact that the parents can contribute only two
alleles each to their offspring. Note, that the 2-allele property is, again, a necessary but
not a sufficient constraint for a group of individuals to be siblings (in absence of errors or
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mutations). The full formalization of the Mendelian inheritance constraints in the context
of sibling reconstruction is presented in [5, 10].

3.2. Relatedness Estimators

In the 1980’s several statistical coefficients of relatedness were introduced [31, 33, 36]. All
methods use observed allele frequencies to define the probabilistic degree of relatedness be-
tween two individuals. In 1999, Queller and Goodnight improved on their approach [37] by
defining simple statistical likelihood formulae for different types of relationships and used
those to infer sibling relationships. The 1999 paper also defines a method to determine the
statistical significance, or “p-value”, of a relationship estimate. This is done by randomly
generating two individuals using the observed allele frequencies and the estimated proba-
bilities of inheriting a shared allele as defined in the paper. Such random pairs of individuals
are generated a large number of times, then the likelihood ratio that excludes 95% of the in-
dividuals is accepted as being at p-value 0.05. Even though this approach was not presented
or aimed as a method for sibship reconstruction, it served as a basis for likelihood methods
that followed. A number of assumptions are made by all relatedness estimators, including
ignoring mutations and genotyping errors. More importantly, the methods assumes that a
sample representative of the population has been scored, and there is accurate estimates of
allele frequencies for the entire population. If these assumptions do not hold, results will
be biased [34]. Finally, any method relying purely on a pairwise genetic distance may lead
to inconsistent results, i.e. the transitivity of the sibling relationship may not hold. More-
over, as mentioned before, any pair of individuals can be siblings yet no pairwise distance
estimate method cannot exclude that possibility [49].

4. Methods for Full Sibling Reconstruction

As more microsatellite markers become available for wild species there is a growing interest
in the possibility of inferring relatedness among individuals when part or all of the pedigree
information is lacking [43]. The majority of the available software requires parental data.
However, recently there have been several methods attempting to reconstruct sibship groups
from genetic data without parental information [1, 2, 6, 8, 29, 32, 43, 49, 53]. Fernandez and
Toro [18] and Butler et al. [9] review many of the methods discussed here.

In their survey, Butler et al. [9] classified sibship reconstruction methods into two main
groups: (1) methods that generate complete genealogical structures and, thus, require ex-
plicit pedigree reconstruction, and (2) pairwise methods that do not imply such pedigree
reconstruction. This latter group can be subdivided into methods that estimate pairwise
relatedness based on genotypic similarity and likelihood approaches that classify pairs of
individuals into different types of relationships based on marker information.

In one of the earlier examples of the first type of method, Painter [32] used a Bayesian
approach to calculate relationship likelihood and then an exhaustive search to find the most
likely sibship in a small population of 9 individuals. He identified the need for using better
optimization techniques for larger populations. Among the methods that followed, some
use Markov-Chain Monte Carlo (MCMC) techniques to locate a partition of individuals
that maximizes the likelihood of the proposed family relationship, such as COLONY [53]
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software and Almudevar’s method [1]. Smith [43] has developed an approach that max-
imizes a relatedness configuration score derived form the pairwise relatedness likelihood
ratio. Almudevar and Field [2] used an exclusion principle that looks for the largest full-
sibling families, using partial likelihoods to pick between families of the same size. Another
approach is based on Simpson’s index of concentration [9], where groups that conform to
Mendelian inheritance rules are formed according to marker information. One of the advan-
tages of these methods is that they avoid the inconsistency problems of pairwise estimators
described below. However, the statistical likelihood methods still depend on the knowledge
of population allelic data (to calculate likelihoods) which is typically unavailable or inaccu-
rate. Moreover, since most of these methods employ global optimization at their core, they
are usually computationally demanding.

As described above, a second type of approach, pairwise methods, are widely used
for sibship reconstruction. While these methods are typically simple and fast they suffer
several disadvantages. First, they can lead to incongruous assignments because only two
individuals are considered at a time and transitivity is not preserved. Second, like all statis-
tical methods, they are dependent on the knowledge of allelic frequencies of the population
considered. Third, if multiple definite relationships exist, such as full siblings, half sib-
lings, or unrelated, arbitrary thresholds have to be defined to decide the category to which
a particular pair is assigned [18].

Here, we consider a different classification of sibling reconstruction methods, based
on the computational approach a method employs as the basis for reconstruction. SIB-
SHIP [49], Pedigree [43], KINGROUP [29], and COLONY [53] rely on statistical esti-
mates of relatedness [37] and reconstruct the maximum likelihood sibling groups. Family
Finder [8] and Almudevar [1] mix statistical and combinatorial approaches. Finally, Al-
mudevar and Field [2], 2-allele Minimum Set Cover [5, 6, 10, 41] and Sheikh et al. [40] use
only the fundamental Mendelian constraints and combinatorial techniques to reconstruct
sibling groups.

A common assumption of all but two (Sheikh et al. [40] and COLONY [53]) of the
sibship reconstruction methods is that the molecular data is error and mutation free [18].
Data that contain errors test the robustness of these methods and are a major problem of the
estimators involving pedigree reconstruction [9].

Following our computationally based classification, we now describe some of the meth-
ods in more detail, providing deeper analysis of the two best-performing methods (see Sec-
tion 5. for experimental comparison), the likelihood based COLONY and the combinatorial
2-allele Minimum Set Cover.

4.1. Statistical Likelihood Methods

As Painter’s [32] first likelihood-based sibling reconstruction method exemplified, likeli-
hood maximization methods require sophisticated optimization techniques to find the most
likely sibship partition for datasets of size greater than 10 individuals.

In 2000, Thomas and Hill [49] introduced a Markov Chain Monte Carlo (MCMC) ap-
proach to find the maximum likelihood of a sibship reconstruction. The method compares
the likelihood ratio of two individuals being siblings to that of the the pair being unre-
lated [36]. Starting with a random partition of individuals into potential sibling groups, the
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method uses a “hill-climbing” approach to explore different sibship reconstructions, reas-
signing individuals into sibling groups to improve the likelihood of all pairs being siblings.
The process continues until one of the halting conditions is reached: either the number
of iterations exceeds a threshold, or the sibling reconstruction stabilizes, i.e. the likeli-
hood value reaches a fixed point. The algorithm was not computationally efficient and was
subsequently improved. Like most likelihood based methods, the main assumption of the
approach is that the sample at hand is representative of the entire population in terms of
allele frequencies and, thus, the relatedness probabilities. More detrimentally, the method
also assumes that the population contains only full siblings and unrelated individuals which
typically does not hold for any population.

In 2002, Thomas and Hill [50] extended their approach by adding half sibling rela-
tionships, thus creating a limited family hierarchy. The algorithm is similar to their pre-
vious approach in [49], with the addition that an individual could be assigned to either a
half sibling group or a full sibling group at every iteration. Half sibling groups were ran-
domly created every few hundred iterations to ensure that a hierarchical structure existed
in the population. In that paper, Thomas and Hill also explored the effects of population
size, population structure, and the allelic information available on the performance of their
MCMC approach. Typical of the statistical approaches, the accuracy of the reconstruction
improved with the increase of available marker information and the nestedness of the full
siblings within half sibling groups but decayed with the increase of the population size.

In 2001 Smith et al. [43] presented two different MCMC methods for sibship recon-
struction. One of the methods is very similar to [50], while the other aims to maximize the
joint likelihood of the entire sibship reconstruction rather than pairwise relatedness ratio.
The methods performed very well for the Atlantic salmon dataset the authors used in the
original publication. The software PEDIGREE is now available for general use as an online
service. Smith et al. have also assayed the dependency of the accuracy of reconstruction
various data parameters. In general, the methods suffer from typical assumptions of other
statistical methods. The accuracy of reconstruction decreases when there is insufficient
allelic diversity per locus or the sample is not representative of the population.

Konovalov et al. [29] introduced KINGROUP, available as an open source JavaTM pro-
gram. KINGROUP uses the relatedness estimators of [37] with additional algorithms de-
signed for the reconstructions of groups of kin that share a common relationship.

Family Finder [8] was introduced in 2003. It is a very efficient method that uses a com-
bination of statistics and graph theory. This approach constructs a graph with individuals
as vertices. Edges represent pairwise sibling relationship and are weighted using, again,
the likelihood ratio of individuals being siblings to their being unrelated [37]. After con-
structing this graph “clusters”, or components, corresponding sibling groups are identified
by finding light edge cuts. Cuts with the number of edges less than one third of the edges
in the graph are chosen. It is a simple and efficient method that can be effective if enough
loci are available and allelic diversity is high. While there is some theoretical basis, usage
of the likelihood ratio implies the same assumptions as [37]. Furthermore, it assumes that
sibling groups are roughly equally sized, which is a dubious assumption and often does not
hold, especially for wild population samples.
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4.1.1. COLONY

A different likelihood maximization approach was used by Wang [53]. COLONY is a com-
prehensive statistical approach that uses the simulated annealing heuristic to find a (local)
likelihood maximum of a sibship reconstruction. The algorithm starts with known full and
half siblings (if any are available) and places the rest into singleton sibling groups, along
with the computed likelihood of each group. A proposed alternate solution at every iteration
is created by moving a random number of individuals from one full sibling group to another
(both groups must not be one of the known full sibling groups). For half siblings, a random
number of entire full sibling groups are moved from one half sibling group to another. As
before, these must not be the original known half sibling families. After generating a new
proposed solution, the likelihood of the old and new configurations of the altered families
is calculated. The new configuration is accepted or rejected based on a threshold which
depends on the ratio of the new and old likelihoods.

COLONY is the first method to fully accommodate sampling bias and genotyping er-
rors, although it relies on many user input parameters to do so. Errors are estimated using
the calculated probability of observing the given allele assuming the actual allele is differ-
ent. The probabilities of allelic dropouts and other typing of errors are based on [19], allelic
dropout is considered to be twice as likely as other errors.

Simulated annealing relies on random numbers and explores a vast solution space.
COLONY can be quite slow, and its performance both in terms of time and accuracy de-
pends drastically on the amount of microsatellite information available. COLONY was
designed for both diploid and haplodiploid species. It is perhaps the most comprehensive
and sophisticated method currently available for full sibling reconstruction with a strong
theoretical basis. However, in addition to other disadvantages common to all statistical sib-
ship reconstruction methods, it also assumes that one of the parents is monogamous which,
unfortunately, renders it inappropriate for many species that have promiscuous mating sys-
tems.

4.2. Combinatorial Approaches

Combinatorial approaches to sibling reconstruction use Mendelian constraints to eliminate
sibling groups that are infeasible and to form potential sibling groups that conform to these
constraints. Various methods then use different objectives to choose from among these the
groups to form the solution.

Almudevar and Field [2] were the first to introduce a combinatorial approach. They for-
mulated the Mendelian properties in form of graphs and constructed all maximal feasible
sibling groups. They then performed an exhaustive search to select the minimal number of
these groups using maximum likelihood of the reconstruction as the guide. Their approach
yielded reasonably good results but was computationally very expensive, often resulting in
the system running out of memory in our experiments (see Section 5.). Almudevar pre-
sented a “hybrid” approach in [1] that used simulated annealing based on MCMC methods
to find a locally optimal solution. The method generates putative triplets of parents and chil-
dren, and then uses simulated annealing to explore the space of different possible pedigrees.
The exploration is similar to the approach taken by COLONY described above and uses the
likelihood of the sibling group configuration as a guide. Such a heuristic approach is not
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guaranteed to find a globally minimum number of sets. This new version of the method
allows for the use of other information in the reconstruction, such as multiple generations
of siblings, parental genotypes and sex where available. All the information is translated
into constraints that guide the formation of the potential feasible solution.

4.2.1. 2-Allele Minimum Set Cover

The 2-Allele Minimum Set cover approach [5, 6, 10, 41], like Almudevar and Field’s, uses
Mendelian constraints, specifically the 2-allele property, to form all maximal feasible sib-
ling groups. The goal, then, is to find the smallest number of these that contain all in-
dividuals. Unlike Almudevar and Field, this approach finds the true global, rather than
local, minimum. We describe the technical details of the approach and the computational
complexity of this formulation of the problem below.

Recall that we are given a population U of n diploid individuals sampled at l loci

U = {X1, ...Xn

}, where X
i

= (ha
i1, bi1i, ..., ha

il

, b
il

i)

and a
ij

and b
ij

are the two alleles of the individual i at locus j.
The goal of the Minimum 2-Allele Set Cover problem is to find the smallest number of

subsets S1, ..., Sm

such that each S
i

µ U and satisfies the 2-allele constraint and
S

S
i

= U .
We shall denote the Minimum 2-Allele Set Cover on n individuals with l sampled loci as
2-ALLELE

n,`

.
Of all the sibling reconstruction problem formulations, this is the only one for which its

computational complexity is known.

Computational Complexity

The Minimum 2-Allele Set Cover problem is a special case of the MINIMUM SET COVER
problem, a classical NP-complete problem [28]. MINIMUM SET COVER is defined as fol-
lows: given a universe U of elements X1, ..., Xn

and a collection of subsets S of U , the
goal is to find the minimum collection of subsets C µ S whose union is the entire universe
U .

Recall, that a (1 + ")-approximate solution (or simply an (1 + ")-approximation) of a
minimization problem is a solution with an objective value no larger than 1 + " times the
value of the optimum, and an algorithm achieving such a solution is said to have an approx-
imation ratio of at most 1 + ". To say that a problem is r-inapproximable under a certain
complexity-theoretic assumption means that the problem does not have a r-approximation
unless that complexity-theoretic assumption is false.

MINIMUM SET COVER cannot be approximated in polynomial time to within a factor
of (1 ° ≤) ln n unless NP µ DTIME(nloglogn

) [16]. Johnson introduced a 1 + ln n
approximation in 1974 [27].

In the 2-ALLELE
n,`

the problem the elements are the sampled individuals and the
sets S are the groups of individuals that satisfy the 2-allele property. The main difference
between MINIMUM SET COVER and 2-ALLELE

n,`

, or more generally k-ALLELE
n,`

problem for k 2 {2, 4}, is that the latter add the 2-allele or the 4-allele restriction on
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the structure of the subsets S . We show that this restriction does not make the problem
computationally easier and k-ALLELE

n,`

remains NP-complete.
A natural parameter of interest in this class of problems is the maximum size (number of

elements) a in any set in S. We denote the corresponding problem of finding the minimum
set cover when the size of sibling sets is at most a as a-k-ALLELE

n,`

in the subsequent dis-
cussions. For example, 2-4-ALLELE

n,`

and 2-2-ALLELE
n,`

are the problem instances
where each subset contains at most two individuals. Recall, that any pair of individuals
necessarily satisfies both the 2-allele and the 4-allele properties. Thus, the collection S for
2-k-ALLELE

n,`

consists of all possible pairs of individuals and the smallest number of
subsets that contain all the individuals are any n/2 disjoint pairs.

In general, if a is a constant, then a-k-ALLELE
n,`

can be posed as a minimum set
cover problem with the number of subsets polynomial in n and the maximum set size being
a. This problem has a natural (1 + ln a)-approximation using the standard approximation
algorithms for the minimum set cover problem [51]. For a general a, the same algorithm
guarantees a

°
a

c

+ ln c
¢
-approximation for any constant c > 0. Recently, Ashley et al. [4]

have been able to obtain several non-trivial computational complexity results for these prob-
lems which we restate here.

For the smallest non-trivial value of a = 3, the 3-k-ALLELE
n,n

3 problem is 1.0065-
inapproximable unless RP = NP . This was proved by a reduction from the TRIANGLE
PACKING problem [20, p. 192]. A

°
7
6 + "

¢
-approximation for any ` > 0 and any constant

" > 0 is easily achieved using the results of Hurkens and Schrijver [25].
For the second smallest value of a = 4 and l = 2, 4-k-ALLELE

n,2 is 1.00014-
inapproximable unless RP 6= NP , proved by a reduction from the MAX-CUT problem
on cubic graphs via an intermediate novel mapping of a geometric nature. The

°
3
2 + ≤

¢
-

approximation can be achieved for a = 3 by using the result of Berman and Krysta [7].
The n≤-inapproximability result under the assumption of ZPP6=NP was proved for all

sufficiently large values of a, that is a = n±, where ≤ is any constant strictly less than ±.
This result was obtained by reducing a suitable hard instance of the graph coloring problem.

In all the reductions above additional loci play an important role of adding complexity to
the problem to ensure the inapproximability result. Thus, interestingly and somewhat coun-
terintuitively, while sampling more loci provides more information and typically improves
the accuracy of most sibling reconstruction methods, it also adds computational complex-
ity and increases the computational time needed to construct the solution, even beyond the
scope of practical computability.

The Algorithm

In [6] we have presented a fully combinatorial solution for the siblings reconstruction prob-
lem based on the 2-Allele Minimum Cover formulation. We briefly describe the 2-ALLELE
COVER algorithm here. The algorithm works by first generating all maximal sibling groups
that obey the 2-allele property and then finds the optimal minimum number of sibling
groups necessary to explain the data. The algorithm maintains a complete enumeration
of canonical possible sibling groups, called the possibilities table, shown in Table 2. Each
potential sibling group is mapped to a set of possible canonical representations. Genetic
feasibility of membership of each new individual in a sibling group is checked using this
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mapping. The intricate process of generating the maximal feasible 2-allele sets is described
in detail in [6].

The 2-allele property reduces the possible combinations of alleles at a locus in a group
of siblings down to a few canonical options, assuming that the alleles in the group are
renumbered 1 through 4. Table 2 lists all different types of sibling groups possible with
the 2-allele property using such a numbering. We do this by listing all possible pairs of
parents whose alleles are among 1,2,3, and 4 and all the genetically different offspring they
can produce. However, in any sibling group with a given set of parents only a subset of the
offspring possibilities from the table may be present.

Table 2. Canonical possible combinations of parent alleles and all resulting offspring
allele combinations

Parents Offspring
allele a allele b

(1, 2) and (3, 4)

1 3
1 4
2 3
2 4
3 1
4 1
3 2
4 2

(1, 2) and (1, 3)

1 1
1 3
2 1
2 3
3 1
1 2
3 2

(1, 2) and (1, 2)

1 1
1 2
2 1
2 2

Parents Offspring
allele a allele b

(1, 1) and (1, 1) 1 1

(1, 1) and (1, 2)
1 1
1 2
2 1

(1, 1) and (2, 3)

1 2
1 3
2 1
3 1

(1, 1) and (2, 2) 1 2
2 1

The maximal feasible 2-allele sets are generated using the canonical possibilities in
Table 2 in a way which provably produces all maximal such sets and does it in provably
fewest number of queries per individual. After that, the minimum set cover is constructed
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as the solution to the sibling reconstruction problem. Note, that since 2-allele minimum
cover and Minimum Set Cover are both NP-complete problems, the solution time is not
guaranteed to be polynomial. We use the commercial mixed integer linear program solver
CPLEX1 to solve the problem to optimality. On datasets with several hundreds individuals
it may take several hours to days to obtain a solution.

Subsequently, Chaovalitwongse et al. [10] have presented a full mathematical optimiza-
tion formulation for the Minimum 2-allele Cover problem. We shall briefly describe the
2-ALLELE OPTIMIZATION MODEL (2AOM) here. The formulation directly models the
objective of finding the minimum number of 2-allele sets that contain all individuals, rather
than using the intermediate steps of generating all maximal 2-allele sets and finding the
minimum set cover of those.

Locus 1 Locus 2 . . .
Individual alleles ha, bi alleles ha, bi

1 44, 44 55, 27
2 12, 56 18, 39
3 28, 44 55, 18
4 13, 13 39, 27
5 28, 51 18, 39
...

Figure 2. A multidimensional matrix representation of a dataset of microsatellite samples.

Recall, that U is the set of individuals, S is a set of sibling groups, and C 2 S is the
reconstructed set of sibling groups which is returned as the solution. Let K be the set of
possible observed alleles and L be the set of sampled loci. As the input, we are given
|U | = n individuals sampled at |L| = l loci. We represent the data as a multidimensional
0-1 matrix M shown in Figure 2. The matrix entry M(i, k, l) = 1 if the individual i 2 U
has the allele k 2 K in locus l 2 L.

From the input matrix, al

ik

is defined as an indicator variable and equals to 1 if the first
allele at locus l of individual i is k. Similarly, bl

ik

is an indicator variable for the second
allele at locus l of individual i is k. f l

ik

= max{al

ik

+ bl

ik

} is an indicator of whether k
appears at locus l of individual i, that is, M(i, k, l) = f l

ik

. Finally hl

ik

= al

ik

· bl

ik

is an
indicator of whether the individual i is homozygous (allele k appears twice) at locus l. The
following decision variables are then used:

• z
s

2 {0, 1}: indicates whether any individual is selected to be a member of sibling
group s;

• x
is

2 {0, 1}: indicates whether the individual i is selected to be a member of sibling
group s;

1CPLEX is a registered trademark of ILOG
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• yl

sk

2 {0, 1}: indicates whether any member of sibling group s has the allele k at
locus l;

• wl

sk

2 {0, 1}: indicates whether there is at least one homozygous individual in sibling
group s with the allele k appearing twice at locus l;

• vl

skk

0 2 {0, 1}: indicates whether the allele k appears with allele k0 in sibling group
s at locus l.

With these variable, the mathematical representation of the objective function and the
constraints of the 2AOM problem are as follows.

Objective function: The overall objective function is to minimize the total number of
sibling groups:

min

X

8s2S
z
s

The minimization objective is subject to three types of constraints stated below.

Cover and logical constraints: Ensure that every individual is assigned to at least one
sibling group: X

8s2S
x

is

∏ 1, 8i 2 U

The binary sibling group variable s is activated for the assignment of any individual
i to the sibling group s:

x
is

∑ z
s

, 8i 2 U,8s 2 S

2-allele constraints: Activate the binary indicator variable for alleles yl

sk

with the assign-
ment of any individual i to the sibling set s. Here C1 is a large constant which can be
defined as C1 = 2|U | + 1:

X

8i2U

f l

ik

x
is

∑ C1y
l

sk

, 8s 2 S,8k 2 K,8l 2 L

Activate the binary indicator variables for homozygous individuals with allele k ap-
pearing twice at locus l in sibling group s. Here C2 is a large constant which can be
defined as C2 = |U | + 1:

X

8i2U

hl

ik

x
is

∑ C2w
l

sk

, 8s 2 S,8k 2 K,8l 2 L

Activate the binary indicator variable for allele pair vl

skk

0 for any assignment to the
sibling group s of the individual i with alleles hk, k0i at locus l. Here C3 is a large
constant and can be defined as C3 = |U | + 1:

X

8i2U

f l

ik

hl

ik

x
is

∑ C3v
l

skk

0 , 8s 2 S,8k 6= k0 2 K,8l 2 L
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Ensures that the number of distinct alleles plus the number of homozygous alleles
does not exceed 4, conforming to Theorem 1:

X

8k2K

yl

sk

+ wl

sk

∑ 4, 8s 2 S,8l 2 L

Every allele in the set should not appear with more than two other alleles (excluding
itself), also conforming to Theorem 1:

X

8k

02K\k

vl

skk

0 ∑ 2, 8s 2 S,8k 2 K,8l 2 L

Binary and nonnegativity constraints:

z
s

, x
is

, yl

sk

, wl

sk

2 {0, 1}, 8i 2 U,8s 2 S,8k 2 K,8l 2 L

The total number of discrete variables in the 2AOM is O(|U ||K||S|) and so is the
total number of constraints. Thus, the 2AOM formulation of the 2-allele minimum cover
problem is a very large-scale mixed integer program problem and may not be easy to solve
in large instances. The main justification for a formal mathematical model of the problem
is that it allows for the theoretical investigation of its computational properties and guides
approximation approaches.

4.3. Consensus-based Approach

Among all the methods for sibling reconstruction, only COLONY [53] is designed to tol-
erate genotyping errors or mutation. Yet, both errors and mutations cannot be avoided in
practice and identifying these errors without any prior kinship information is a challenging
task. A new approach for reconstructing sibling relationships from microsatellite data de-
signed explicitly to tolerate genotyping errors and mutations in data based on the idea of a
consensus of several partial solutions was proposed by Sheikh et al. in [40, 42]

Consider an individual X
i

which has some genotyping error(s). Any error that is af-
fecting sibling reconstruction must be preventing X

i

’s sibling relationship with at least one
other individual X

j

, who in reality is its sibling. It is unlikely that an error would cause two
unrelated individuals to be paired up as siblings, unless all error-free loci do not contain
enough information. Thus, we can discard one locus at a time, assuming it to be erroneous,
and obtain a sibling reconstruction solution based on the remaining loci. If all such solu-
tions put the individuals X

i

and X
j

in the same sibling group (i.e., there is a consensus
among those solutions), we consider them to be siblings. The core of the consensus-based
error-tolerant approach is concerned with pairs of individuals that do not consistently end
up in the same sibling group during this process, that is, there is no consensus about their
sibling relationship.

Definition 2. A consensus method for the sibling reconstruction problem is a computable
function f that takes k solutions S = {S1, ..., S

k

} as input and computes one final solution.
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The strict consensus places two individuals into a sibling groups only if they are to-
gether in all input solutions. While it always results in a consistent solution, it also pro-
duces many singleton sibling groups. In [40, 42] a distance based consensus for sibling
reconstruction was introduced. Starting with a strict consensus of the input solutions, dis-
tance based consensus iteratively merges two sets until the quality of the solution cannot
be improved. The computational complexity and the algorithms change depending on the
cost of the merging operations and the function that defines the quality of the solution. The
approach taken in [40, 42] uses the number of the sibling groups in the resulting solution
as the measure of the quality of the solution, that is, it seeks to minimize the number of
groups. The cost of the merging operation is based on the size of the groups being merged
and errors that need to be corrected for the 2-allele property to be preserved in the combined
group.

Any method or a mix of methods for sibling reconstruction can be used as the base to
produce the input solution for the consensus method. The running time of the consensus
method depends on the running times of the base methods. In our experiments (see Sec-
tion 5.) consensus based on 2-allele minimum cover algorithm typically achieved over 95%
accuracy.

5. Experimental Validation

To assess and compare the accuracy of various sibling reconstruction methods we used
datasets with known genetics and genealogy. Since most sibling reconstruction methods do
not tolerate errors in data, we first used error free datasets. However, biological datasets
containing no errors are rare. Thus, in addition to biological datasets, we created simulated
sets using a large number of parameters over a wide range of values. We compare the
performance of five sibling reconstruction methods, spanning the variety of computational
techniques: Almudevar and Field [2], Family Finder [8], KINGROUP [29], COLONY [53],
and 2-allele Minimum Cover [6].

In addition, we used the same datasets with introduced errors to assess the performance
of COLONY and the distance-based consensus of the 2-allele Minimum Cover when errors
are present.

We measure the error by comparing the known sibling sets with those generated by var-
ious sibling reconstruction methods, and calculating the minimum partition distance [21].
The error is the percentage of individuals that would need to be removed to make the re-
constructed sibling sets equal to the true sibling sets. Note, we are computing the error in
terms of individuals, not in terms of the number of sibling groups reconstructed incorrectly.
Thus, the accuracy is the percent of individuals correctly assigned to sibling groups.

The experiments were run on a combination of a cluster of 64 mixed AMD and Intel
Xeon nodes of 2.8 GHz and 3.0GHz processors and a single Intel Xeon Quad Core 3.2 GHz
Intel processor with 24 GB RAM memory.

5.1. Biological Datasets

For validation of our methods, both the 2-allele and the consensus extension, we used bi-
ological datasets of offspring that resulted from one generation of controlled crosses, thus
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the identity of the parents and their microsatellite genotypes were known.

Radishes. The wild radish Raphanus raphanistrum dataset is a subsample of [11]. It
consists of samples from 64 radishes from two families with 11 sampled loci. Close
to 53% of allele entries are missing.

Salmon. The Atlantic salmon Salmo salar dataset comes from the genetic improvement
program of the Atlantic Salmon Federation [23]. We use a truncated sample of 351
individuals from 6 families and 4 loci. There are no missing alleles at any locus.
This dataset is a subset of one of the samples of genotyped individuals used by [2] to
illustrate their technique.

Shrimp. The tiger shrimp Penaeus monodon dataset [26] consists of 59 individuals from
13 families with 7 loci. There are 16 missing allele entries (3.87% of all allele en-
tries).

Flies. Scaptodrosophila hibisci dataset [56] consists of 190 same generation individuals
(flies) from 6 families sampled at various number of loci with up to 8 alleles per
locus. All individuals shared at least 2 sampled loci which were chosen for our study.
25% of allele entries were missing.

Table 3 summarizes the results of the four algorithms on the biological datasets.

Table 3. Accuracy (percent) of the 2-allele algorithm and the three reference
algorithms on biological datasets. Here l is the number of loci in a dataset and “Inds”
column gives the number of individuals in the dataset. The three reference algorithms

are [2] (A&F), Family Finder by [8] (B&M), and the KINGROUP by [29] (KG).

Dataset l Inds Ours A&F B&M KG
Shrimp 7 59 77.97 67.80 77.97 77.97
Salmon 4 351 98.30 Out of memory 99.71 96.02
Radishes 5 64 75.90 Out of memory 53.30 29.95
Flies 2 190 100.00 31.05 27.89 54.73

Almudevar and Field’s algorithm ran out of 4GB memory on the salmon and radish datasets.

5.2. Synthetic Datasets

To test and compare sibling reconstruction approaches, we also use random simulations
to produce synthetic datasets. We first create random diploid parents and then generate
complete genetic data for offspring varying the number of males, females, alleles, loci,
number of families and number of offspring per family. We then use the 2-allele algorithm
described above to reconstruct the sibling groups. We compare our results to the actual
known sibling groups in the data to assess accuracy. We measure the error rates of algorithm
using the Gusfield Partition Distance [21]. In addition, we compare the accuracy of our 2-
allele algorithm to the two reference sibling reconstruction methods, [8] and [29], described
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above. We repeat the entire process for each fixed combination of parameter values 1000
times. We omit the comparison of the results to the algorithm of [2] since the current version
of the provided software requires user interaction and therefore it is infeasible to use it in
the automated simulation pipeline of 1000 iterations of over a hundred combinations of
parameter values.

First, we generate the parent generation of M males and F females with parents with l
loci and a specified number of alleles per locus a. We create populations with uniform as
well as non-uniform allele distributions. After the parents are created, their offsprings are
generated by selecting f pairs of parents. A male and a female are chosen independently,
uniformly at random from the parent population. For these parents a specified number of
offsprings o is generated. Here, too, we create populations with a uniform as well as a
skewed family size distribution. Each offspring randomly receives one allele each from its
mother and father at each locus. This is a rather simplistic approach, however, it’s consistent
with the genetics of known parents and provides a baseline for the accuracy of the algorithm
since biological data are generally not random and uniform.

The parameter ranges for the study are as follows:

• The number of adult females F and the number of adult males M were equal and set
to 5, 10 or 15.

• The number of loci sampled l = 2, 4, 6

• The number of alleles per locus (for the uniform allele frequency distribution) a =

5, 10, 15.

• Non-uniform allele frequency distribution (for 4 alleles): 12 - 4 - 1 - 1, as in [1].

• The number of families in the population f = 2, 5, 10.

• The number of offspring per mating pair (for the uniform family size distribution)
o = 2, 5, 10.

• Non-uniform family size distribution (for 5 families): 25 - 10 - 10 - 4 - 1, as in [1]

All datasets were generated on the 64-node cluster running RedHat Linux 9.0. The 2-
allele algorithm is used on this generated population to find the smallest number of 2-allele
sets necessary to explain this offspring population. We use the commercial MIP solver
CPLEX 9.0 for Windows XP on a single processor machine to solve the minimum set cover
problem to optimality. The reference algorithms were run on a single processor machine
running Windows XP2.

We measure the reconstruction accuracy of various methods as the function of the num-
ber of alleles per each locus, family size (number of offspring), number of families (and
polygamy), and the variation in allele frequency and family size distributions. Figure 3
shows representative results for the accuracy of our 2-allele algorithm, the Greedy Con-
sensus algorithm and the two reference algorithms on uniform allele frequency and family
sizes distributions.

2The difference in platforms and operating systems is dictated by the available software licenses and pro-
vided binary code
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Figure 3. Accuracy of the sibling group reconstruction methods on randomly generated
data. The y-axis shows the accuracy of reconstruction as a function of various simulation
parameters. The accuracy of our 2-allele algorithm and Greedy Consensus approach is
shown, as well as that of the two reference algorithms: [8] and [53] (COLONY). The title
shows the value of the fixed parameters: the number of adult males/females, number of
families, the number of offspring per family, the number of loci, and the number of alleles
per locus.
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The results of COLONY, our 2-allele Minimum Cover and the consensus based ap-
proach on simulated datasets with introduced errors are shown in Figure 4.

Figure 4. Results on simulated datasets with errors. Only 50 iterations were used for the
COLONY algorithm due to its computational inefficiency and time constraints.
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Overall, we have compared our 2-allele algorithm as well as the robust consensus ap-
proach to the best existing sibling reconstruction methods on biological and synthetic data
over a wide range of parameters. We have identified the strengths and weaknesses of var-
ious approaches to sibling reconstruction and pinpointed the data parameters under which
those are manifested.

6. Conclusion

Full utilization of new genetic tools provided by advances in DNA and genome analysis will
only be realized if computational approaches to exploit the genetic information keep pace.
Pedigree reconstruction in wild populations is an emerging field, made possible by the de-
velopment of markers, particularly DNA microsatellites, that can be used to genotype any
organism, including free-living populations sampled in the field. Rules of Mendelian in-
heritance and principles of population genetics can be applied to microsatellite genotyping
data to infer familial relationships such as parentage and sibship, and thus reconstruct wild
pedigrees. Such pedigrees, in turn, can be used to learn about a species’ evolutionary po-
tential, their mating systems and reproductive patterns, dispersal and inbreeding (reviewed
in [35]). The findings of pedigree reconstruction have been especially notable in the area
of paternity assignment, where dozens of examples of previously undocumented multiple
paternity have now been reported (e.g. [15, 17, 44, 52]).

Our focus has been on a more challenging computational problem than paternity (or
parentage) assignment, that of sibling reconstruction. Sibling reconstruction is needed when
wild samples consist primarily of offspring cohorts, in cases where it is logistically difficult
or impossible to sample the parental generation. We first develop a formal definition of the
sibling reconstruction problem and formalize the genetics of sibship. Sibling reconstruction
methods can be divided into three categories depending on their approach, methods that rely
only statistical estimates of relatedness [29, 32, 43, 49, 50, 53], those that combine statistical
and combinatorial approaches [8], and those that use only Mendelian constraints and com-
binatorial techniques [1, 2, 5, 6, 10, 41]. Statistical methods rely on estimates of pairwise
relatedness and typically reconstruct maximum likelihood sibling groups. The performance
of statistical methods depends upon an accurate estimate of underlying allele frequencies
within the sampled populations, rather than the observed sample. Furthermore, they are of-
ten computationally demanding. Combinatorial approaches offer the advantage that sibling
groupings are based only on Mendelian constraints without needing information on popu-
lation allele frequencies. A new method we describe here, the 2-allele minimum set cover,
generates all sibling groups that obey the 2-allele property and then finds the optimal min-
imum number of sibling groups needed to explain the data. To accommodate genotyping
errors and mutations, we also describe a new consensus-based approach applied here to the
2-allele minimum cover algorithm.

We tested the performance of various sibling reconstruction methods using both real
biological data and synthetic data sets. For real data, the actual pedigree and sibgroups
were known from controlled crosses, and we tested the accuracy of five different methods
in recovering the known sibgroups. We found that our 2-allele distance-based consensus
method performed very well, recovering over 95% of the known sibgroups. We also pro-
duced synthetic datasets which simulated a variety of mating systems, family structures,
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and genetic data. Again, our method produced very good results. Of the other methods
tested, COLONY [53], a statistical approach, also performed very well when the assump-
tions of monogamy held and there were a sufficient number of loci and accurate estimates
of allele frequencies.

There is no one method that is guaranteed to provide the correct answer, since sam-
ples of different populations suffer from different sampling biases and all methods make
assumptions that may not hold for a specific dataset. We favor the 2-allele method for this
very reason: it makes the fewest assumptions. Also, the 2-allele algorithm overall performs
well over a wide range of data parameters, thus making it a good general method, especially
when few loci are sampled or the allelic variation is low. Our current recommendation is
to use the proposed consensus approach on the 2-allele method in combination with other
available methods, keeping in mind aspects of the study organism’s biology or sampling
biases, as a way to achieve confidence in sibling reconstruction.

Another consideration is presentation and implementation of the methods. Most molec-
ular ecologists do not have a background in computer science, and will opt for a method that
is easily accessible, user-friendly, and produces results that can be readily interpreted, re-
gardless of the underlying mathematical or computational elegance. COLONY is available
as a Windows executable. However, it is computationally intensive and as such, is imprac-
tical to run on a personal computer. Our method does not require installation on a user’s
computer but provides a web-based service. It only requires an Internet connection to send
the dataset for analysis using a web interface3. Our software accepts any file formatting
using Excel software which is widely used by biologists.

Sibling reconstruction is among the first kinship reconstruction problems that have gen-
erated a variety of computational methods. However, more complicated pedigrees and ge-
nealogical relationships await computational solutions. Computationally, kinship recon-
struction in wild populations is not only a rich source of interesting problems, but one that
poses a particular challenge of testing the accuracy of devised solutions. Real biological
data must be used to conduct comparisons of feasibility and accuracy of different methods.
More benchmark data is needed to ground truth algorithms and software. Finally, novel
approaches must be developed to assess accuracy of the resulting solutions and confidence
in the answers provided.
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