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ABSTRACT
Previous techniques for estimating quantitative genetic parameters, such as heritability in populations

where exact relationships are unknown but are instead inferred from marker genotypes, have used data
from individuals on a pairwise level only. At this level, families are weighted according to the number of
pairs within which each family appears, hence by size rather than information content, and information
from multiple relationships is lost. Estimates of parameters are therefore not the most efficient achievable.
Here, Markov chain Monte Carlo techniques have been used to partition the population into complete
sibships, including, if known, prior knowledge of the distribution of family sizes. These pedigrees have
then been used with restricted maximum likelihood under an animal model to estimate quantitative
genetic parameters. Simulations to compare the properties of parameter estimates with those of existing
techniques indicate that the use of sibship reconstruction is superior to earlier methods, having lower
mean square errors and showing nonsignificant downward bias. In addition, sibship reconstruction allows
the estimation of population allele frequencies that account for the relationships within the sample,
so prior knowledge of allele frequencies need not be assumed. Extensions to these techniques allow
reconstruction of half sibships when some or all of the maternal genotypes are known.

ESTIMATES of the genetic parameters of quantita- 1999) ; and likelihood techniques, used to determine the
likelihood of a pair falling into particular relationshiptive traits, such as heritability, are important be-
classes, e.g., full sibs or nonsibs, given the observedcause they give an indication of the ability of a species
marker information (Th ompson 1975;Mousseau et al.to respond to selection and thus the potential of that
1998) .species to evolve (Lande 1982; Mousseau and Roff
Similarly, two methods that allow the estimation of1987; Fal coner and Mackay 1996; Lande and Sh an-

quantitative genetic parameters associated with a traitnon 1996) . In addition, genetic parameter estimates
without reference to the exact pedigree have been de-are finding a place in conservation studies through, for
scribed (Rit l and 1996b; Lynch and Wal sh 1998;example, estimates of the total genetic variability of a
Mousseau et al. 1998) . These use molecular data topopulation (St or fer 1996) .
infer pairwise relationships between individuals, sinceTraditional techniques for estimating variance com-
this is the least complex level at which relationships mayponents require, however, knowledge of the relation-
be estimated. Rit l and (1996b) proposed a regressionships among the individuals recorded (Fal coner and
approach to parameter estimation, where measures ofMackay 1996; Lynch and Wal sh 1998) . In natural
pairwise phenotypic similarityare regressed against pair-populations, detailed knowledge of pedigree is absent
wise relatedness (Rit l and 1996b; Lynch and Wal shin all but the most carefully studied populations, and
1998) . Alternatively, if prior information is available oneven then may be subject to errors. Molecular marker
population structure, likelihood-based procedures maydata provide a means to infer relationship without a full
be adopted, in which pairs are placed into a predeter-pedigree.
mined population structure according to the probabilityMolecular-based tools for inferring genetic relation-
of observing their genotype and phenotype (Mousseauships may be grouped into two categories: method-of-
et al. 1998; Th omas et al. 2000) .moments estimators, which are used to estimate relat-
Pairwise techniques lose valuable information in theedness, as a continuous measure, on the basis of shared

form of higher-order relationships. For example, ifalleles at marker loci (Lynch 1988;Quel l er and Good-
three individuals sampled from a single generation havenigh t 1989; Rit l and 1996a; Lynch and Rit l and
genotypes aiai, ajaj, and akak (ai, aj, and ak are mutually
exclusive alleles) , they cannot be full sibs; but with pair-
wise analysis, such exclusion is not possible. Addition-
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It is therefore dependent only upon family size and not one length (representing full sib) or to double that
length (representing unrelated) in phylogeny recon-information content. Consequently, pairwise methods

do not yield the most efficient estimates for parameters struction. Moreover, no attempt is made to update the
assumed prior distributions of the parameters used inand are prone to larger standard errors than efficient

methods of estimation such as restricted maximum like- pedigree reconstruction, since these are not the param-
eters of interest. In this light, the techniques used inlihood (Th omas et al. 2000) . Only in the case of bal-

anced populations containing two classes of relationship pedigree reconstruction are not Bayesian in nature.
Reconstructed pedigrees are subsequently used toare families weighted equally, and then they give esti-

mates identical to ANOVA-derived estimateswhen exact form a relationship matrix suitable for use in an animal
model run with restricted maximum likelihoodpedigree information is known (Th omas et al. 2000) .

A secondary problem is obtaining estimates of the (REML), specifically using the ASREML program (Gil -
mour et al. 1997) . This approach allows traditional effi-allele frequencies at the marker loci. In previous studies,

allele frequencies have been assumed known or have cient methods for parameter estimation to be used and
hence simplifies the inclusion of additional factors orbeen estimated from the sample. If allele frequencies

are estimated from the sample under investigation, they the use of multivariate analysis if data have been col-
lected from several traits. In addition, methods are out-are subject to further random error, since there are

relativeswithin the sample, which might bias subsequent lined that allow the estimation of population allele fre-
quencies that account in part for relationships withinestimates of pairwise relationships. To combat this prob-

lem, Quel l er and Goodnigh t (1989) proposed recal- the sample. In many natural populations, half sibships
are more common than full sibships, and in additionculating the allele frequencies for each pair under inves-

tigation, excluding the information from that pair. This some maternal genotype information may also be avail-
able. This mimics the situation in some studied naturalremoves a small covariance between population and

individual allele frequencies and results in slightly im- populations [e.g., the intensively studied Soay sheep
(Ovis aries) population on the St. Kilda island group,proved estimates, although change is negligible with

large numbers. Rit l and (1996a) adopted the same ap- Scotland] . Simple extensions to the MCMC procedure
are discussed to allow for the reconstruction of paternalproach.

A final problem with pairwise methods is how they half-sib families where some percentage of the maternal
genotypes is assumed to be known.may be extended to include other factors such as sex

or year in the model. Since they operate on a pairwise
level, other factors must also be investigated on a pair- INFERRING SIBSHIPSwise level and as a result the optimum estimate may not
be achieved. Markov chains: Markov chain Monte Carlo simula-

tions facilitate the determination of solutions to prob-Here we demonstrate a simple two-step procedure for
estimating variance components: first, families of sibs lems that cannot readilybe solved by theoretical calcula-

tions (Nor r is 1997) . A Markov chain is a random walkare reconstructed using a Markov chain Monte Carlo
(MCMC) procedure, and second, the reconstructed sib- through the parameter space of a system, where each

step of the walk depends only upon the current stateships are used to estimate variance components.
The MCMC procedure reconstructs sibships within a of chain. If the likelihood for the set of parameters at the

current point of the chain is calculated and comparedsingle generation, allowing improved parameter estima-
tion through more efficient weighting of families and against the likelihood at the next point, then the ran-

dom walk may be “guided” to points of high likelihooduse of more than pairwise pedigree information. Con-
ceptually the sibship reconstruction procedure shares within the parameter space. This provides a way to esti-

mate parameter values with a high likelihood ( thoughfeatures with Bayesian approaches using MCMC proce-
dures in phylogeny reconstruction (Kuh ner et al. 1995; not necessarily the highest) without having to search

the entire parameter space. These techniques are there-Yang and Rannal a 1997; Lar get and Simon 1999) ,
where, given the sequence data, the most plausible phy- fore of particular use in solving complex likelihood

problems, especially when the parameter space is large.logenetic trees are generated from a large number of
potential trees without the need to investigate every In this study, we first use onlymolecular data to recon-

struct sibships, assuming individuals are either sibs orpossible tree. Similarly, in sibship reconstruction, plausi-
ble sibships are generated from the sample using the unrelated using an MCMC approach, and then use the

reconstruction to estimate variance components for amarker data without the need to investigate every possi-
ble combination of sibships. However, in sibship recon- quantitative trait. Errors in pedigree reconstruction are

of two types: type I, where genuinelyunrelated individu-struction the aim is to reconstruct a number of groups
with specific relationships rather than determine likely als are classed as related, and type II, where genuinely

related pairs are classed as unrelated. It is shown thatdistances between each member (or taxon) in the sam-
ple. This approach of reconstructing specific groups is type I errors lead to large downward bias in parameter

estimation, while type II errors lead only to trivial down-equivalent to fixing the possible branch lengths to either
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ward bias. It is not necessary to find the point with The likelihood of the observed genotypes within a
putative full-sib family is calculated ashighest likelihood, but merely a point of high likeli-

hood, since, first, sibship reconstruction leads to few
errors of type I, and second, the true sibship may not Lgenotypes 5
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have the highest likelihood given the marker informa-
tion. where l denotes independent marker loci; bl, the num-The population: Suppose a sample of n individuals ber of alleles at locus l; w, x, y, and z, index alleles; i
has been taken from a single generation of a population. indexes an individual from the putative family; p1wx is theEach individual has been scored for genotype at l physi- ordered genotype frequency of parent 1; p2yz is the or-cally unlinked marker loci, and there is some informa- dered genotype frequency of parent 2; and L(gil) is thetion on which to base assumptions about relationship likelihood of observing the genotype of individual i at
structure. In the case described here, it is assumed that locus l given the parental genotypes. For example, if p1
the sample contains only full sibs and unrelated individ- and p2 share the genotype (1, 2) then L(gil) 5 1⁄4 whenuals and that the distribution of full-sib family sizes is the offspring genotype, g, is (1, 1) or (2, 2) , L(gil) 5 1⁄2known. Other relevant information might be about when g is (1, 2) , and L(gil) 5 0 otherwise.
known relationships, such as between offspring and dam In practical computing it is much more efficient, re-
in a half-sib structure. The likelihood of the relationship ducing running time to its square root, to take the first
structure, allele frequencies, and genotypes of the indi- offspring and assign one of its alleles to one parent and
vidual animals may be calculated from the sample. This the other allele to the other parent and then sum over
is a function of the observed marker information and the remaining alleles (see appendix ) .
any previous knowledge of the allele frequencies and In the simulations, the likelihood of the family struc-
relationship structure. The likelihood maybe expressed ture depends only upon the family size (since category
as information is included in the way the Markov chain

mixes the population) . Either a noninformative distri-Lpopulation 5 L(a, g, s|m, d) , (1)
bution for full-sib family size, where each family size is
equally likely, or a truncated Poisson (Po) distributionwhere a represents the marker allele frequencies within
(no zero class) describing the probability of each familythe population, g denotes the n genotypes within the
size was used. The independence of families allows fastsample, s denotes the sample space of possible family
Monte Carlo algorithms to be written, since at each stepstructures ( i.e., the sib family membership) , m denotes
in the chain only the likelihoods of individual familiesthe observed marker information, and d represents the
rather than the likelihood of the whole population needprevious knowledge, such as the distribution of family
to be considered.size, about relationship structures.
The “hill climbing” algorithm for full-sib family re-Maximizing (1) over all possible family structures is

construction:prohibitive, since an extremelylarge number is possible,
a. Start with each member of the sample assigned to aeven in small samples. For example, with 10 individuals,
different family. This starting point avoids the prob-restricted to being either full sib or unrelated, there are
lem of generating populations with likelihoods of115,975 possible family structures. Markov chains or
zero, which is almost a certainty with randomly se-other optimization techniques are therefore required.
lected families.

b. Calculate the likelihood for each family and store.
With known allele frequencies c. Select a random individual, x, from a randomly cho-

sen family f1. This individual is to be moved at randomThe likelihood of individual families: If allele fre-
to a new location (new family) within the sample.quencies are assumed to be known, then individual fam-

d. Select a random destination family, f2, for individualily likelihoods become independent and Equation 1
x ( including family f1 and a “blank” familycontainingmay be expressed as
no individuals) . The new location is chosen in a way
that allows the individual to stay in the same placeLpopulation 5

p

f
L(gf, sf|mf, d, a) , (2)

or to be placed in a new family on its own.
e. Calculate Lold 5 L( f1) 3 L( f2) . Use the stored likeli-where f indexes family.
hoods to calculate the likelihood of observing fami-In the model, the likelihood of any single family f of
lies f1 and f2 prior to moving x. This equals the productsize nf is equal to the likelihood of the observed geno-
of the likelihoods of each family on its own, sincetypes given that all the members of f are full sibs,
families are independent.multiplied by the likelihood of observing the structure

f. Move x from f1 to f2.(here the size) of family f given the prior information:
g. Calculate new likelihoods for f1 and f2 after the move
of x ; these are termed L( f1) new and L( f2) new.Lfamily 5 Lgenotypes · Lstructure. (3)
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h . Calculate the new likelihood of observing both fami- With unknown allele frequencies
lies, Lnew 5 L( f1) new 3 L( f2) new. Calculating parental allele frequencies from samplesi. Calculate r 5 Lnew/ (Lnew 1 Lold) . containing relatives: Population allele frequencies arej. Draw z from a uniform distribution between 0 and 1. usually unknown and must also be calculated from thek. Compare z with r. If z , r, move x back to f1. If z $ sample. In sibship reconstruction, the likelihood of ob-r, store L( f1) new and L( f2) new. This step means that the serving a particular sibship depends on the allele fre-probability of accepting a change, i.e., keeping x in quency in the parental generation, since these are thef2, depends on the change of the likelihood. If Lnew @ alleles that are sampled to form the offspring genera-Lold, the change is almost certainly accepted, but if tion. Allele frequencies may be estimated by using aLold ! Lnew, then the change is almost certainly re- weighted least-squares approach (Dil l on and Gol d-jected. In addition, this allows backsteps, a decrease

st ein 1984) , with correlations of the allele counts be-in the likelihood, to occur, thereby reducing the
tween relatives accounted for by inclusion of the rela-chance that the chain will become stranded on a
tionship matrix. The derived estimator is dependentfalse maximum.
only upon the relationship matrix and the allele countsl. Return to c. Continue to move (mix) individuals be-

tween families until stopping criteria are reached; âi 5 (1TR21a) (1TR211)21, (5)
these are discussed below.

where âi is the mean allele count, R is the relationship
A number of criteria may be used to stop the chain: matrix, a is the vector containing the allele counts for

each individual, and 1 is a vector of ones. Allele fre-1. Afixed number of iterates has been run. Thismethod quency is then estimated as âi/ 2.must be repeated a number of times for the sample An updated algorithm: The previous algorithm canand the resulting full-sib families compared for simi- be modified using the allele frequency estimator so aslarity. The population with the greatest likelihood to update allele frequencies. The process is begun bymay then be selected, or some composite structure calculating the allele frequencies as though all membersdetermined (although this requires additional of the population are unrelated and then periodicallychecking for exclusions) . updating the estimates as groups of full sibs are gener-2. The likelihood for the whole population ( the prod- ated (e.g., every 5000 iterates) . Recalculation every stepuct of the stored likelihoods) remains constant or is unnecessary: first, there may be no change made innearly so for a fixed number of iterates. population structure, and second, a single change does3. The average family size approaches the expected not affect allele frequencyestimates significantly. Updat-family size and then remains constant or nearly so ing allele frequencies reduces the population frequencyfor a fixed number of iterates. of alleles shared bygrouped individuals and also reduces
the probability that a group reconstructed as full sibsIn practice, there is little difference between using
will be broken down again, even if the reconstruction iscriteria 2 and 3 to stop the chain. In populations of size
wrong. It is therefore recommended that allele updating200, with five alleles at each of 10 loci and a family size
start after a number of cycles have already been rundistribution that is Po(5) , the population likelihood and
(say, 100,000) .mean familysize level out together, with the values stabi-

lized by 300,000 cycles (often by 220,000) . With the
same level of marker information, a population of size Measuring the accuracy of the reconstructed family800 stabilizes after z900,000 cycles.
Half-sib reconstruction:The algorithm is easilymodi- A statistic that enables measurement of the accuracy

of each reconstructed family is useful for the purposesfied to accommodate the reconstruction of half-sib fami-
lies. For half-sib families, the probability of observing of comparison. Simulating populationswith known rela-

tionships using the same parameters (or estimates ofthe genotypes of a putative half-sib family, over all the
possible genotypes of the shared parent, is computed the parameters) for the distribution of family size as

those of the study population allows percentage confi-for each locus and then multiplied across loci. The
likelihood of each offspring depends on the likelihood dence levels for a given size of family to be estimated.

Two confidence levelsmaybe determined: the probabil-of receiving one allele from the common parent and
the other from an allele pool with the same allele fre- ity that full-sib family members in the family recon-

structed are genuine full sibs and the probability thatquencies as the population. Parental genotype informa-
tion may be incorporated into both half- and full-sib the family is complete ( i.e., is not the result of a larger

family being split—a possible problem with this ap-algorithms by constraining the parental genotypes over
which the offspring genotype likelihoods must be proach to sibship reconstruction) .

To assess the properties of the estimators in the simu-summed. The likelihood equation for a half-sib family
is included in the appendix . lated study, where the real family structure is known,
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an additional statistic that scores the reconstructed pedi-
gree for accuracy was defined

accuracy 5 (S fs|fs 2 S fs|ur) / Totfs, (6)

where S fs|fs is the total number of correctly reconstructed
full-sib pairs, S fs|ur is the total number of incorrectly re-
constructed full-sib pairs, and Totfs is the total number
of full-sib pairs in the true pedigree. This statistic equals Figur e 1.—The change in accuracyof familyreconstructionzero when all members of the population are in differ- with changing sample size, for the three simulated distribu-
ent families and one when the population structure is tions of family size [Po(2) , Po(5) , and Po(10)] . Simulation

conditions: 200 individuals, 10 marker loci with five allelesreconstructed exactly. Since the statistic actively penal-
each and heritability 0.5.izes accuracy when unrelated individuals are recon-

structed as full sibs ( type I errors) , it may become nega-
tive in poorly reconstructed populations.

some proportion of the simulated individuals hadThe simulations: Simulation was used to compare the
known mothers, whose genotype information was alsoproperties of heritability estimates made using the re-
available. Half-sib families were then reconstructed us-constructed pedigree approach with those of the pair-
ing a modified form of the MCMC algorithm that ac-wise approaches. Phenotypic data for full-sib data sets
commodated the known maternal genotype data. Differ-were generated using the infinitesimal model (Bul mer
ent percentages, 0, 10, 20, 40, or 80% of missing mat-1980) . An individual’s phenotype was equal to
ernal information, were simulated.
Reconstructed sibships were used under an animal

Yij 5
1

aim 1 aif
2 2

1 N
1

0, s2
A

2 2

1 N(0, s2
E) , (7) model to estimate the additive genetic and residual vari-

ances for the simulated trait, employing a standard pack-
where Yij is the phenotypic value of sib j in family i, age, ASREML (Gil mour et al. 1997) . Heritability esti-
s2
A is the additive genetic variance, s2

E is the residual or mates were taken as the summary statistic. Heritabilities
environmental variance, and aim and aif are the breeding were also estimated by the pairwise approaches (Rit -
values of the parents simulated from an N(0, s2

A) distri- l and 1996b; Lynch and Wal sh 1998; Mousseau et al.
bution. The phenotypic variance was set to 1; so s2

A 5 1998; Th omas et al. 2000) . There are a number of forms
h2 and s2

E 5 1 2 h2. It was assumed that there was no of the likelihood technique, and in this study the proce-
common environmental correlation of sibs. dure based on the difference in phenotype was used
The simulations were run under different conditions: (Th omas et al. 2000) . Results were compared in terms

Marker information was varied, with populations simu- of the mean deviation of heritability estimates from the
lated with 2, 3, 5, 8, and 10 equally frequent alleles at “best” achievable estimates ( those estimated by REML
each of 10 loci; full-sib family sizes were drawn from a from the true pedigree and the same quantitative data) ,
truncated ( i.e., no null class) Poisson distribution with which reflects bias, and mean squared errors (MSE), a
parameters 2, 5, and 10; and populations with 100, 200, composite statistic of bias and sampling variance over
400, and 800 individuals in total were simulated. Each simulations.
set of conditions was run 250 times on independently
generated random populations. Heritabilitywas set to 0.5.

RESULTSTo test the robustness of the algorithm to reconstruct
families, populationswere simulated from a Po(5) distri- Sample size: Figure 1 shows the change in the accu-
bution of family size, but different assumptions were racy statistic as sample size increases for three distribu-
used about this distribution during reconstruction, tions of family size. Accuracy decreases approximately
namelyuninformative (where every familysize is equally linearly with an increase in the sample size. This is due
likely) , Po(5) , and Po(10) . to the increased chance that unrelated individuals have
Simulations were run on the populations with allele similar genotypes through random sampling and maybe

frequencies updated after every 2000, 5000, 10,000, compensated for by increasing the marker information.
20,000 cycles, or not at all. The accuracy of the recon- The accuracy for the Po(2) distribution of family size
struction statistic was also calculated and compared be- was much less than the accuracy of the Po(5) or Po(10)
tween each level of allele update. graph, reflecting much poorer reconstruction of pedi-
In each set of simulations, MCMC iterations were grees. This is discussed below.

continued for 1,400,000 cycles, a greater number than Consider first the results for the Po(5) distribution.
required for the leveling off of both mean family size Figure 2aii shows the mean deviation of heritability esti-
and population likelihood. mates obtained using marker-based approaches from
Simulations were also undertaken in which paternal those using the known pedigrees ( the zero line) . Esti-

mates using the reconstructed populations deviate lesshalf-sib families were generated. It was assumed that
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Figur e 2.—Results for full-sib fam-
ily simulations with 10 marker loci
with five alleles each, heritability 0.5,
and varied numbers of individuals in
the sample for the three simulated
distributions of family size. (a) The
change in mean deviation of marker-
based heritability estimates from esti-
mates made using actual pedigrees
(zero line) with changing sample size
for the three simulated distributions
of family size. (b) The change in
mean squared error of heritability es-
timates with changing sample size.
Columns i, ii, and iii refer to family
size distributions Po(2) , Po(5) , and
Po(10) . Values for the MSE of regres-
sion-based estimates of Figure 2bi are
off the scale (see text) .

from the true pedigree estimates than pairwise estimates Family size: Simulations run using different distribu-
tions for family size showed similar trends to those ob-and show trivial negative bias. The size of the negative

bias increases in a roughly linear manner as sample size tained for families simulated with a Po(5) distribution,
with those for the Po(10) distribution being virtuallyincreases (and hence also increases linearly with the

accuracy statistic) . This is probably due to the splitting identical. Pairwise techniques showed more consistent
mean deviations in heritability estimates across theof large families into two or more smaller ones during

the sibship reconstruction procedure, which reduces range of sample sizeswith small mean familysize [Po(2) ;
Figure 2ai] than with larger family size distributionsestimates of the variance between families and thereby

heritability estimates (Fal coner and Mackay 1996) . (Figure 2, aii and aiii) . This is because information for
variance component estimation from a population inThe pairwise techniques share the same trends across

the sample sizes, a result that possibly reflects the similar which families are small comes mainly from pairs of
individuals, rather than larger groups. The downwardmanner in which they weight family information, using

size rather than information content. bias in estimates obtained using reconstructed pedi-
grees with Po(2) family sizes is due to an increase inA more important measure of performance of the

techniques is summarized in Figure 2bii, which displays the number of type I errors, which at sample size 800
make up about a quarter of the number of pairs assignedthe change in MSE across the range of sample sizes. In

all cases, MSE is dominated by the sampling variance, as full sibs. A greater amount of marker information
would be required to increase the accuracy of recon-rather than the bias, indicating that any bias is trivial

compared with the level of precision of the techniques. struction and reduce this bias in estimates. Figure 2bi
shows that the MSE of reconstructed pedigree estimatesConfirming previous results (Th omas et al. 2000) , the

regression procedure has much larger MSE than the is smaller than that of the likelihood-based estimates,
with one-third of the MSE being explained by the bias atpairwise likelihood approach and has a slower decline

in value than other techniques as sample size increases, sample size 800. Sample variances for the reconstructed
pedigree estimates are two-thirds those for the likeli-indicating a less efficient technique. The pairwise likeli-

hood procedure has MSEsz50% greater than those of hood procedure.
With a Po(10) familysize distribution, estimates usingthe reconstructed pedigree, which are virtually indistin-

guishable from those of the true pedigree ( the small reconstructed pedigrees showalmost no deviation from
those using actual pedigrees (Figure 2, aiii and biii) .difference being explained by the downward deviation

seen in Figure 2aii) . MSE is approximately inversely This indicates that few type I errors are made during
pedigree reconstruction. Exclusions due to incompati-proportional to the sample size for all the techniques

except for the regression procedure. ble genotypes become more frequent with larger family
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sizes. Therefore, at smaller family sizes there is a lower
chance of incorrect families being detected than at
larger family sizes, leading to greater numbers of type
I errors, reducing accuracy (Figure 1) , and increasing
bias (Figure 2ai) .
Previous results (Rit l and 1996b; Th omas et al. 2000)

indicate that pairwise procedures depend on there be-
ing sufficient variance of relatedness to be effective ( i.e.,
they require that there be adequate numbers of groups
of relatives within the sample) . The simulation results
supported this, with the regression-based procedure
having extremely large MSE when actual variance of
relatedness is low [with Po(2)] and smaller MSE with
larger actual variance of relatedness [with Po(10)] . The
MSE values for the regression-based procedure were not
plotted on Figure 2bi since theywere off the scale (0.53,
0.34, 0.38, and 0.29 for sample sizes 100, 200, 400, and
800, respectively) . Less dramatic improvements in MSE
were noted in the likelihood-based procedure, where
prior information on population structure compensates
in part for less actual variation in relatedness.
Marker data: Figure 3a shows the change in the accu-

racy as the amount of marker information is varied,
simulated by changing the number of alleles at each
locus. Accuracy improves at a diminishing rate with in-
creasing allele number, with little difference in accuracy
between 6 and 10 alleles per locus. At the minimum
number of alleles per locus ( two) , mean accuracy is
z20.2, reflecting a large number of type I errors (Equa-
tion 6) and resulting in large downward bias in heritabil- Figur e 3.—Results for full-sib family simulations with 200ity estimates. Figure 3b illustrates this point with the individuals, 10 marker loci, heritability 0.5, actual family size
largest mean deviation of estimates occurring with low distribution Po(5) , assumed distribution for sibship recon-

struction Po(5) , and varied numbers of alleles per locus. (a)allele numbers. With the exception of lowmarker infor-
The change in accuracy of family reconstruction with chang-mation (,5 alleles per locus) , estimates made using
ing numbers of alleles. (b) The change in mean deviation ofreconstructed pedigrees are closer to true pedigree esti- marker-based heritabilityestimates from estimatesmade usingmates than using either pairwise technique. At low actual pedigrees (dotted line) with changing numbers of al-

marker information, the likelihood procedure shows leles. (c) Change in mean squared error of heritability esti-
mates with changing numbers of alleles.least mean deviation from the true pedigree estimates.

Figure 3c shows the change in MSE with allele num-
ber. Again, the regression procedure shows the largest
MSE and sampling variances of parameter estimate. De-
viations in the MSE of estimates using reconstructed TABLE 1
pedigrees from those using the true pedigree were al-

Simulation results when different family sizemost entirely explained by the bias ( indicated by mean
distributions are assumed during pedigreedeviation) . Since mean deviation for the likelihood pro- reconstruction (the same populations werecedure is also small (Figure 3b) , its MSE is higher than reconstructed in each case)

that for the true pedigree due to sampling variance,
and hence estimates made using the likelihood proce- Distribution Accuracy (var) Mean deviation MSE
dure have lower precision.

True pedigree 1 (0) — 0.0260Assumed distribution of family sizes:Table 1 summa-
Uniform 0.848 (0.003) 20.0111 0.0296rizes the change in accuracy, mean deviation, and MSE Po(5) 0.911 (0.002) 20.0056 0.0266when different assumptions are made about the family Po(10) 0.943 (0.001) 20.0229 0.0265

size distribution. Accuracy is lowest when an uninforma-
Simulated populations contained 200 individuals with thetive distribution for family size ( i.e., every family size

true family size distribution being Po(5) . Ten loci with fiveis equally likely) is assumed. Despite this, the mean equally frequent alleles were simulated. Heritability was set atdifference between heritabilityestimates determined us- 0.5. Mean deviation is the average deviation of the estimated
ing pedigrees reconstructed with uninformative family parameter from the REML-derived estimate using correct ped-

igree information. var, variance.size distributions and correct pedigrees is very small.
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TABLE 2

Simulation results when parental allele frequencies were estimated after different numbers of cycles

Method Accuracy (var) Mean deviation MSE

True pedigree 1 (0) — 0.0492
Not recalculated 0.518 (0.015) 20.0608 0.0735
20,000 cycles 0.544 (0.014) 20.0677 0.0717
10,000 cycles 0.545 (0.012) 20.0651 0.0724
5,000 cycles 0.552 (0.014) 20.0503 0.0665
2,000 cycles 0.545 (0.016) 20.0570 0.0669

Simulation conditions: 100 individuals, five marker loci with five alleles each, heritability 0.5, actual family
size distribution Po(5) , and assumed distribution for sibship reconstruction Po(5) . var, variance.

Moreover, there is little increase in the MSE of these
estimates, indicating only a little loss in precision. Using
the correct distribution of familysizes, in this case Po(5) ,
then accuracy and estimates are improved slightly, with
MSE being almost identical to that of the true pedigree.
Accuracy is improved further if a Po(10) distribution

is assumed, even though the true distribution is Po(5) .
This is because comparatively larger weights are placed
on larger family sizes, thereby reducing the problem of
large families being split into smaller families. However,
if marker information is low, so that the probability of
full-sib triplet exclusion due to incompatible genotypes
is low, then increasing the weights of larger families can
result in large numbers of incorrectlygrouped individu-
als. As mentioned previously, this causes larger bias in
estimates of heritability than related pairs being classed
as unrelated.
Updating allele frequencies: Table 2 summarizes the

simulations investigating the recalculation of parental
allele frequencies. Results show that there is some im-
provement in accuracy and in parameter estimates as
the number of reestimations of allele frequencies is
increased. It would be expected that such allele reesti-
mation of allele frequencies would have a greater effect
in small populations, where the variance in family size
is large, since under these conditions the weights placed
on allele counts from each family would be most incor-
rect. In such cases, allele frequencies in the offspring
generation might poorly represent allele frequencies in
the parent generation. In larger populations, especially
those with small family sizes, allele frequencies are more
constant between generations (Fal coner and Mackay

Figur e 4.—Results for half-sib family simulations with 2001996) . individuals, 10 marker loci each with five alleles, heritability
Half sibs: Figure 4a shows the accuracy of half-sibship 0.5, actual family size distribution Po(5) , assumed distribution

reconstruction when different percentages of mothers for sibship reconstruction Po(5) , and varied percentages of
maternal information known. (a) The change in accuracyand their marker information are known. As expected,
of family reconstruction with changing percentage of knownwhen the amount of maternal marker information de-
maternal information. (b) The change in mean deviation ofcreases, the accuracy also decreases. Again, this drop is marker-based heritabilityestimates from estimatesmade using

closely followed by a downward deviation in heritability actual pedigrees (dotted line) with changing percentage of
estimates (Figure 4b) . The regression-based procedure known maternal information. (c) Change in mean squared

error of heritability estimates with changing percentage ofmakes no use of the maternal genotype information
known maternal information.and so shows the same trend (a downward deviation

of z20.1 to 20.2) across Figure 4b. The likelihood
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TABLE 3 a family of size 1, while a family of size 5 may be more
easily split into families of 3 and 2.Percentage confidence levels, determined by simulation,

for the accuracy of families of size 3 and 4

DISCUSSIONFamily size Number % true full sibs % correct size
Monte Carlo Markovchain procedures to reconstruct3 1819 98 56

sibships from a single generation of a population pro-4 1717 99 78
vide an improved means of estimating variance compo-

Simulation conditions: 200 individuals, 10 marker loci with nents compared to earlier techniques. Reconstructing
five alleles each, actual family size distribution Po(5) , and the pedigree in this manner recovers in part some ofassumed distribution for sibship reconstruction Po(5) .

the family-specific weights lost in pairwise techniques,
resulting in more efficient use of the information and
lower mean-squared errors in parameter estimates.procedure can be easilymodified to incorporate paren-
Moreover, since pedigrees are then assumed known,tal genotype information, and so heritability estimates traditional procedures for partitioning the variance canimprove with increased maternal genotype information. be used, facilitating the incorporation of additional ef-With low amounts of maternal genotype information, fects into the model or the use of multivariate analysisheritability estimates are biased downward. on data collected from several traits. The sibship recon-There is a large MSE associated with the regression- struction process is independent of the quantitativebased procedure (Figure 4c) , mainly due to sampling data, and so actual values for the genetic parametersvariance rather than bias (Figure 4b) . The likelihood should not affect the technique’s accuracy in estimatingprocedure shows increasing MSE as the percentage of those parameters. For this reason, simulations examin-maternal genotype information falls, more than can be ing the effects of the actual level of heritabilitywere notexplained by the downward bias of the procedure and run. A final attractive feature of these procedures is thatindicating a reduction in precision of the estimator. allele frequencies in the population can be estimatedEstimates of heritability using the reconstructed pedi- more precisely than as the simple mean among animalsgree have higher MSE than estimates using the known in the sample analyzed.pedigree, although this difference may be explained by Since the Markovchain depends on the calculation ofthe downward trend shown in Figure 4b. likelihoods, it is relativelystraightforward to incorporateConfidence levels: Simulations of 250 populations of additional information, for example, maternal genotype

size 200 were used to estimate the percentages of fami- information, year of birth , or, in the case of plants,
lies of sizes 3 and 4 (numbers chosen as examples) that separation by distance provided a suitable dispersion
were reconstructed correctly. In each case, two quanti- parameter is known. This ease of modification allows
ties were determined: the percentage of reconstructed the incorporation of possible genotyping errors into
families comprising only true full sibs and the percent- the algorithm. Providing the probability of incorrectly
age that were actually of that size, rather than a subset typing a genotype (which may be done overall, or on a
of a larger family. A Po(5) distribution of family size locus- or allele-specific basis) can be estimated prior to
was assumed in the simulations and marker information running the algorithm. Equation 4 could be modified
was set at 10 loci with five alleles each. to still sum over all parent allele combinations, but now
More families of size 3 than 4 were reconstructed, allowing each of these alleles to change with some prob-

although families of size 4 were expected to be more abilityon the basis of the probabilityof a mistyped locus.
frequent (Table 3) . This is because the procedure tends As this would slow the algorithm considerably, some
to split larger families, which is reflected in the lower
confidence that the families reconstructed as size 3 were
actually of size 3. Simulations also show that recon-
structed families of size 4 are more likely to be a genuine
collection of full sibs because of the relatively greater
chance that an incorrect group of size 4 is excluded
through incompatible marker information. Figure 5
shows the distribution of the actual sizes of families that
were split to give reconstructed families of sizes 3 and
4. Of particular note is the drop in the second point of
each curve relative to the rest of the curve, which is due
to the low likelihood placed on a family of size 1 under
a Poisson distribution of family sizes. For example, a
family of size 4 is unlikely to be split into a family of 3 Figur e 5.—The distribution of the actual size of families

reconstructed as being of sizes 3 and 4.and another of 1, due to the lowprobabilityof observing
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assumptions restricting the number of transitions al- als to join it to another group. For example, a family
of size 6 maybe reconstructed initially as two families oflowed may be required. Since mistyped alleles are more

likely to cause families to be split rather than incorrect size 3, but due to the lowprobability of moving through
smaller family sizes, be unable to combine into the cor-families to be formed, however, the present algorithm

can cope with low levels of mistyping without modifica- rect single family. To combat this problem, a step might
be added to the algorithm that, with some probability,tion, as only a small bias in variance component esti-

mates is introduced by this type of error. For example, periodically attempts to combine two entire families
( thereby attempting a direct jump across a valley of thea common form of genotyping error is the mistyping

of heterozygotes as homozygotes due to the failure of likelihood surface) and/ or break up an entire family
(although this might prevent mean family size or popu-one allele to amplify, so a small number (100) of popula-

tions were simulated to examine this type of error. Ten lation likelihood from stabilizing) . Results indicated
that the use of an incorrect distribution of family sizepercent of the loci simulated in these populations were

mistyped in the above manner and this increased (by that increases the expected frequency of larger families
[ the reconstructions operating under a Po(10) distribu-about 0.1) the downward bias in heritability estimates.

MSE also increased, but remained less than with pairwise tion] had improved accuracy over reconstruction using
the correct prior [ in this case a Po(5) distribution] .techniques.

There is interaction between sample size and the However, such an approach to estimate mean family
sizes and distributions is not advisable since it maycauseamount of marker information required to accurately

reconstruct the families. With large sample sizes, the familysize to be overestimated, especially in populations
with low marker information where exclusions basedprobability of obtaining type I errors increases, and

more marker information is required to counteract this on incompatible genotypes are rare. In populationswith
ample marker information, exclusions often preventeffect. Further investigation is required to determine

the extent of the interaction and to investigate the bal- large families from being formed incorrectly. Simula-
tion to estimate the expected bias in family size resultsance between the collection of individual data and the

amount of marker data genotyped. in a circular problem, since the distribution of family
sizes required to simulate the families is unknown. How-When compared to previous techniques, this new ap-

proach performs admirably well, in many cases having ever, it maybe possible to use simulation using the same
sample size, the same level of marker information, thelower mean deviation from the best available estimator,

calculated from the known pedigree, and lower mean estimated family size distributions, and the variance
component estimates to estimate the size of bias shownbias from the true parameter. In addition, it yieldsmean

squared errors that are often almost indistinguishable in the variance components. This would require the
assumption that anybias in subsequent variance compo-from those of the known pedigree, and as the MSE in

most cases is dominated bysampling variance, anybiases nent estimation approximately equals the bias in the
original estimates, an assumption that may hold only ifin parameter estimates become trivial.

There are a number of areas where caution must that original bias is small since variance components
are bounded below by zero.be taken when using relationships based on marker

information to infer parameters. For example, in popu- The choice of distribution of family size must also
be considered cautiously for, as previously mentioned,lations that are not in linkage equilibrium, the informa-

tion from each locus is not independent. Instead, the assigning unrelated individuals to the same family can
cause large downward bias in estimates of between-fam-likelihood of the marker data in any putative full-sib

familymust be calculated from the probabilityof observ- ily variance and of genetic parameters derived from
them. It is best, therefore, to choose a distribution thating parental genotypes across all loci simultaneously

rather than individually. results in an underestimate of mean family size. Results
indicate that when using an uninformative distributionA second area for caution is in using reconstructed

sibships to determine other parameters such as the aver- of family sizes, the mean size of families in the recon-
structed pedigree is consistently underestimated if theage size of families or the distribution of family sizes,

which might be used in studies of reproductive success true distribution of familysize is Poisson. This is because
an uninformative distribution does not weight the cre-or other life history traits (St ear ns 1992) . Recon-

structed sibships have a tendency to underestimate ation of large families enough to break up two families
of roughly the same size to recombine them as onemean familysize and do not give an accurate description

of its distribution. For example, the reconstructed pedi- larger family, even if they are actually one large family.
The same problem occurs even when the correct distri-grees examined to determine the confidence levels for

families of sizes 3 and 4 showed that more families of bution for familysize is used, although to a lesser extent.
There are ways that the algorithm itself might besize 3 were reconstructed than of size 4 (Table 3) , even

though the latter were expected to be more common. improved, leading to more likely population structures.
These include the possibility of combining whole fami-Familysizes are underestimated due to the lowprobabil-

ity of breaking down a correctly grouped set of individu- lies or subdividing an entire family (perhaps that with
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APPENDIX: MODIFIED FORMS OF LIKELIHOODstraining the sum of possible parental genotypes using EQUATION 4the probability ( if known) that a parent is contained
within the samples collected from previous years. Gener- A constrained version: A version of Equation 4 that is

faster to compute may be obtained by constraining theations could then be linked using the likelihood of the
observed marker data and the probability that one or possible parental genotypes. An allele is assigned to each

parent by selecting an offspring at random from theboth parents are from the previous generation.
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putative full-sib family and assigning one of its alleles is also an indicator variable, with ]* 5 1 when the unor-
dered genotype of parent 1 is the same as the unorderedto one parent and other allele to the remaining parent.
genotype of parent 2 and ]* 5 0 otherwise. For example,If the randomly selected offspring has genotype (w, y) ,
in the calculation of c, when the parental genotypes arethen the likelihood of the genotypes within a full-sib
(1, 2) and (3, 4) , c 5 8; when (1, 1) and (2, 3) , c 5 4;family may be expressed as
when (1, 1) and (2, 2) , c 5 2; and when (1, 2) and (2,
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l
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Including half sibs: Equation 4 may be modified to
calculate the likelihood of the genotypes within nestedwhere
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where variables are the same asEquationsA1–A3, exceptand
here n f is the number of full-sib families within the half-

c 5 8/ 2(]wx 1 ]yz 1 ]*). (A3) sib family, m indexes the full-sib family, nm is the number
of full sibs within the full-sib family, and i indexes the

Ll is the likelihood of an individual locus, indexed by l; offspring number. In this case, p1 ismale and p2 is female.
]wx, ]wy, and ]yz are indicator variables with, for example, If there is onlyone maternal familywithin each pater-
]wx 5 1 when allele w is the same as allele x, ]wx 5 0 nal family, nf 5 1 and (A4) reduces to (4) . If there is
otherwise; bl is the number of alleles at locus l; x and z only one offspring per maternal family, then (A5) is
index unconstrained parental alleles; c is a term that equivalent to an analysis on half-sib families only. If
adjusts the frequency of ordered genotypes to unor- maternal genotype information is available, then that
dered genotypes; i indexes an individual from the puta- part of the likelihood equating to the sum over the
tive family; p1wx is the ordered genotype frequency of possible maternal genotypesmaybe removed. The likeli-
parent 1; p2yz is the ordered genotype frequencyof parent hood of the observed offspring genotype would then
2; L(gil) is the likelihood of observing the genotype of be calculated given the known maternal and all possible

paternal genotypes.individual i at locus l given the parental genotypes; ]*


