Exercise Set 1

Do at least one of the following three exercises:

1. Write a program that simulates the haploid Wright-Fisher model with selection, as described in class. Note that, ultimately, the A allele must sweep to fixation or be lost (i.e., achieve a frequency of $q=0$ or 1) in every population.
(a) Use your program to estimate the probability (= fraction of replicate simulations) that a new advantageous mutation (i.e., a single copy of the A-type with fitness 1 $+s$) becomes fixed in a population of size $N=4$ when $s=0.1$, which represents a substantial selective advantage, and in a population of the same size but for a new mutation with a smaller advantage $s=0.01$. How do these compare with the branching process-based approximation $\mathrm{P}($ fixation $)=2 s$?
(b) Can a deleterious mutation sweep to fixation? Use your program to estimate the probability of a new mutation with $s=-0.01$ sweeping to fixation in a population of size $N=4$.
(c) Use your program to estimate the probability that a new "neutral" mutation (i.e., one with $s=0$) will sweep to fixation. How does this probability compare with those of weakly advantageous ($s=0.01$) and weakly deleterious $(s=-0.01)$ mutations?
(d) [Optional] Use your program to explore how population size affects fixation probabilities in the different scenarios above. Discuss!
2. (Requires a little background in linear algebra.) Probabilities of fixation can be computed exactly from the binomial transition probabilities, $g_{j k}$ of the Wright-Fisher model with selection. Recall the argument from class: Let u_{i} be the probability that a population with i copies of A ultimately becomes fixed for A. Note that $u_{0}=0$ (a population with no A alleles has no chance of fixation) and $u_{N}=1$ (A already is fixed). If $i \neq 0$ or N, the population will have j copies of A in the next generation with probability $g_{i j}$, in which case the probability of fixation would then be u_{j}. Considering all possible transitions of a population with $i A$ alleles leads to (for $i=1,2, \ldots, N-1$)

$$
\left(^{*}\right) u_{i}=g_{i 0} u_{0}+g_{i 1} u_{1}+\cdots+g_{i, N-1} u_{N-1}+g_{i, N} u_{N}=\sum_{k=1}^{N-1} g_{i k} u_{k}+g_{i, N}
$$

where we used $u_{0}=0$ and $u_{N}=1$.
Matrix methods can be used to compute all $N-1$ of the unknown fixation probabilities. Let the vector of unknown probabilities be $\mathbf{u}=\left(u_{1}, u_{2}, \ldots, u_{N-1}\right)^{\top}$. In
addition set $\mathbf{r}=\left(g_{1, N}, g_{2, N}, \ldots, g_{N-1, N}\right)^{\top}$ and let \mathbf{Q} be a matrix with $i j t h$ element equal to $g_{i j}$, with i and j both ranging from 1 to $N-1$. Equation (${ }^{*}$) is equivalent to the matrix equation $\mathbf{u}=\mathbf{Q u} \mathbf{+ r}$. This can easily be solved for \mathbf{u} :

$$
\left(^{* *}\right) \mathbf{u}=(\mathbf{I}-\mathbf{Q})^{-1} \mathbf{r}
$$

where \mathbf{I} is the identity matrix of size $N-1$ and $(\mathbf{I}-\mathbf{Q})^{-1}$ is the inverse of the matrix $\mathbf{I}-\mathbf{Q}$. The fixation probability of a new mutant A is the first element, u_{1}, of \mathbf{u}. Use $\left(^{* *}\right)$ to compute the exact probability of fixation for the scenarios described in exercise 1. Discuss!
3. Using a branching process approach, we showed in class that the probability P of fixation of a new advantageous mutation satisfies $1-P=e^{-(1+s)}$ and argued that $P \approx 2 s$. In this problem, you will develop a better approximation for P.
(a) Taking the natural log of both sides, the equation defining P is equivalent to $\ln (1-P)=-P e^{x}$ where $x=\ln (1+s)$. Replace $\ln (1-P)$ and e^{x} in this equation with their Taylor series in P and x, respectively.
(b) Substitute $P=A x+B x^{2}+C x^{3}+\cdots$ in the left-hand side of the resulting equation and solve for the coefficients A, B, C, \ldots by equating coefficients of powers of x on both sides of the equation.
(c) Finally, expand $\ln (1+s)$ in a Taylor series and collect terms to find an approximation for P that is at least cubic in s.
(d) Use this approximation to compute P for the scenario described in exercise 1. (Compare this to the "rough" approximation $P=2$ s.) Discuss!
(e) [Optional] Compare your answer to (d) with the approximate fixation probability computed via simulation (ex. 1) or the exact probability (ex. 2).

