Exercise Set #2

- 1. Gillespie Problem 3.4
- 2. Gillespie Problem 3.5 (computer program not required)

Do at least one of the following two exercises

Consider the "additive" fitnesses w₁₁ = 1, w₁₂ = 1 - s/2, w₂₂ = 1 - s. Let p = freq(A₁), q = freq(A₂); prime (') indicates "next generation."

a. Let
$$\Delta p = p' - p$$
 and $\Delta q = q' - q$. Use the fact that $q = 1 - p$ to show $\Delta q = -\Delta p$

- b. Use equation 3.1 or 3.2 of Gillespie (either edition) to show that $\Delta p = \frac{pqs}{2\overline{w}}$
- c. Show that the mean fitness in this case is $\overline{w} = 1 qs$
- d. Use a-c to show that

$$\Delta \overline{w} = \overline{w}' - \overline{w} = \frac{pqs^2}{2\overline{w}}$$

e. The variance of random variable X is $var(X) = E(X - E(X))^2 = E(X^2) - (E(X))^2$ where $E(\cdot)$ means expectation or average of the argument over the distribution of X. Thinking of the additive fitnesses as random variables sampled from a population in Hardy-Weinberg proportions, show that the variance in fitness is

$$var(w) = \frac{pqs^2}{2}$$
,
which, combined with part d, implies that
 $\Delta \overline{w} = \frac{var(w)}{\overline{w}}$.

This is a version of "Fisher's fundamental theorem of natural selection" for the case of additive fitnesses.

4. Write a program that iterates directional selection for a diploid population with two alleles, A_1 and A_2 , using the deterministic recursion for allele frequency change (eq. 3.1 or eq. 3.2 in either edition of Gillespie). Assume A_1 is favored and fitnesses are "additive," i.e., that $w_{11} = 1$, $w_{12} = 1 - (s/2)$, and $w_{22} = 1 - s$, where s > 0. Your program should track the evolution of p, the frequency of A_1 . Use

Case	<i>ρ</i> 0	<i>p</i> 1	S
A	0.01	0.99	0.001
В	0.01	0.99	0.01
С	0.01	0.99	0.1
D	0.001	0.99	0.001
E	0.001	0.99	0.01
F	0.001	0.99	0.1
G	0.01	0.999	0.1
Н	0.001	0.999	0.1

your program to compute the minimum number of generations needed to evolve from p_0 to p_1 for each of the following cases:

(b) Use your computational results to conjecture some general hypotheses or rulesof-thumb about how the starting and final frequencies and the strength of selection affect the time required for an allele spread. Be sure to explain your reasoning.