Exercise Set #3 Do at least two of the following exercises 1. (a) Charlesworth & Charlesworth: Problem 4.1i, p. 192 (Calculation) (b) Charlesworth & Charlesworth: Problem 4.2, p. 192 (Derivation) 2. (a) Charlesworth & Charlesworth: Problem 8.1, p. 442 (Derivation) (b) Charlesworth & Charlesworth: Problem 8.2, p. 442 (Calculation) 3. (Computation) Write a program to iterate the general recursion for selection at two linked sites (eq. B8.8.1 on p. 419 of Charlesworth & Charlesworth) for the following set of "multiplicative fitnesses (see Table 8.3, p. 422[†]): | haplotype | A_1B_1 | A_1B_2 | A_2B_1 | A_2B_2 | |-----------|------------------|--------------------------|--------------------------|--------------------------| | A_1B_1 | $(1-s_A)(1-s_B)$ | 1- <i>s</i> _A | 1-s _B | 1 | | A_1B_2 | 1-s _A | $(1-s_A)(1-s_B)$ | 1 | 1-s _B | | A_2B_1 | 1-s _B | 1 | $(1-s_A)(1-s_B)$ | 1- <i>s</i> _A | | A_2B_2 | 1 | 1-s _B | 1- <i>s</i> _A | $(1-s_A)(1-s_B)$ | Assume $s_A = 0.01$, $s_B = 0.04$ and c = 0.1. Try runs for two different sets of initial haplotype frequencies: (1) $x_1 = x_2 = x_3 = x_4 = 0.25$ and (2) $x_1 = x_2 = 0.2$; $x_3 = x_4 = 0.3$. For each run, have your program use the haplotype frequencies in every generation to compute the corresponding frequencies of A_1 and B_1 (p_A and p_B , respectively), the disequilibrium D, and the mean fitness \overline{w} . The formulas for these quantities are: $$p_{_{\rm A}} = x_{_1} + x_{_2}$$, $p_{_{\rm B}} = x_{_1} + x_{_3}$, $D = x_{_1}x_{_4} - x_{_2}x_{_3}$, and $\overline{w} = \sum_{l=1}^4 x_{_l}w_{_{_l}}$ where $w_{_{_l}} = \sum_{j=1}^4 x_{_j}w_{_{ij}}$. Plot and describe the evolution of p_{A_1} , p_{B_1} , D, and \bar{w} for each run. Compare the outcomes of your two runs. Discuss. [†] Table 8.3 and Table 8.2 both contain the same typo. Can you find it?