Exercise Set \#3

Do at least one of the following two multi-part exercises

1. Quantitative geneticists are often interested in understanding variation in two or more traits simultaneously (e.g., height and weight or metabolic rate and body size). The overall variability of such "multivariate" traits includes the variance of each component trait as well as the covariances between all pairs of traits. Like variances, these covariances can be partitioned into genetic and environmental components. In this exercise you will derive this partition as well as the "crossvariance" between parent and offspring, parallel to what Gillespie does for a single trait.

Consider two traits X and Y expressed by a single offspring of two parents. Following Gillespie, suppose that $P_{\mathrm{X}}=X_{\mathrm{m}}+X_{\mathrm{p}}+\varepsilon_{\mathrm{X}}$ for trait X and $P_{\mathrm{Y}}=Y_{\mathrm{m}}+$ $Y_{\mathrm{p}}+\varepsilon_{\mathrm{Y}}$ for Y .
a. Using arguments similar to Gillespie's for a single trait ($1^{\text {st }}$ ed p., $107 / 2^{\text {nd }}$ ed., pp. 142-3), show that

$$
C_{P}=C_{A}+C_{E},
$$

where $C_{P}=\operatorname{Cov}\left(P_{X}, P_{Y}\right)$ is the "phenotypic covariance," $C_{A}=2 \operatorname{Cov}\left(X_{m}, Y_{m}\right)=$ $2 \operatorname{Cov}\left(X_{\mathrm{p}}, Y_{\mathrm{p}}\right)$ is the "additive covariance," and $C_{\mathrm{E}}=\operatorname{Cov}\left(\varepsilon_{\mathrm{X}}, \varepsilon_{\mathrm{Y}}\right)$ is the "environmental covariance." Important: in your derivation, be sure to include the justifications for setting any terms equal to zero.
b. The additive covariance, C_{A}, can be estimated using the parent-offspring "cross-variance," which is the covariance between X in a parent and Y in the offspring (or vice versa). Use arguments parallel to those in Gillespie ($1^{\text {st }}$ ed pp., 108-9/2 ${ }^{\text {nd }}$ ed., p. 144) to show that

$$
C_{\mathrm{A}}=2 \operatorname{Cov}\left(P_{\pi \mathrm{X}}, P_{\mathrm{OY}}\right),
$$

where $P_{\pi \mathrm{X}}$ is the phenotypic value of X in the parent and P_{oy} is the phenotypic value of Y in the offspring. Be sure to justify setting any terms equal to zero in your derivation.
c. It can be shown ${ }^{\dagger}$ that if $C_{A} \neq 0$ then selection on trait X alone will cause a change in Y and vice versa. Use your intuition to discuss possible consequences of selecting up or down on X alone if $C_{A}<0$ or if $C_{A}>0$. What do you think would happen if $\mathrm{C}_{\mathrm{A}}=0$?

[^0]2. Write a program that iterates the two-locus selection model described in $\S 4.2$ of Gillespie, $2^{\text {nd }}$ edition. Your script should track the evolution of the gamete frequencies x_{1}, x_{2}, x_{3}, and x_{4} over generations. Use the equations on p .108 to project frequencies for the next generation in terms of the current ones. That is, use the recursion equations $x_{1}^{\prime}=x_{1}+\Delta x_{1}, x_{2}^{\prime}=x_{2}+\Delta x_{2}, x_{3}^{\prime}=x_{3}+\Delta x_{3}$, and $x_{4}^{\prime}=1-x_{1}^{\prime}-x_{2}^{\prime}-x_{3}^{\prime}$ each generation. (Careful: be sure your program uses only the current frequencies x_{1}, x_{2}, x_{3}, and x_{4} when calculating $\Delta x_{1}, \Delta x_{2}$, and Δx_{3} each generation.)

Adapt your script to analyze the selective sweep phase of genetic draft (§4.3). Specifically, use the hitchhiking fitnesses at the foot of p. 108 with $h=1 / 2$ and $s=0.2$. Assume the pre-mutation frequency of neutral allele B_{1} is $p_{2}=0.3$ and that the new advantageous mutant A_{1} appears in a diploid population of size $N=50$.
a. Assume that the new mutation appears on a B_{1} background, i.e., initially $x_{1}=\frac{1}{2 N}=\frac{1}{100}=0.01, x_{2}=0, x_{3}=p_{2}-\frac{1}{2 N}=0.3-0.01=0.29$, and $x_{4}=$ 0.7. What is the initial value (including the sign) of the disequilibrium D in this case?

- Set the recombination rate $r=0.1$ and iterate your recursions until A_{1} has nearly completed its selective sweep to fixation, i.e., until $p_{1}=x_{1}+x_{2} \approx$ 1. (1000 generations should suffice.) Record the final frequency of B_{1}, $p_{2}=x_{1}+x_{3}$
- Repeat the steps above to compute the final frequencies of B_{1} for recombination rates $r=0.075, r=0.05, r=0.025$, and $r=0$
b. Compute the five final values comparable to those you found in part a but assume that the new mutation first appears on a B_{2} background, i.e., initially $x_{1}=0, x_{2}=\frac{1}{2 N}=0.01, x_{3}=0.3$, and $x_{4}=q_{2}-\frac{1}{2 N}=0.7-0.01=0.69$. What is the initial value of D in this case?
c. Discuss how your results relate to those shown in Figure 4.4 on p. 110 of Gillespie

[^0]: ${ }^{\dagger}$ The derivation, which uses concepts and results from multiple linear regression and linear algebra, is slightly beyond of scope of this course. See me if you're interested in the details.

