Mathematical Genetics, Fall 2017, HW 4

Instructions: Do all problems and show your work.

1. Suppose that a model (that is not a standard WF) leads to a coalescent that is not the standard Kingman coalescent. It has mutations appearing according to the usual rate $\theta / 2$ Poisson process along each lineage, and pairwise coalescence of lineages at the usual rate of 1 , but it also allows for three-way coalescences of lineages at rate 0.1 per triple. (A three-way coalescence means that, at some time in the past, three of the individuals represented in the lineages had a common parent.)
(a) For a sample of size $n=3$, compute the probability that all three individuals are genetically identical.
(b) Find the numerical value of this probability when $\theta=0.2$.
2. For Kingman's coalescent with infinite-sites mutation, let K_{i} be the number of mutations that appear while there are exactly i lineages (i.e., between times T_{i+1} and T_{i}).
(a) Show that

$$
P\left(K_{i}=k\right)=\left(\frac{i-1}{\theta+i-1}\right)\left(\frac{\theta}{\theta+i-1}\right)^{k}, \quad k=0,1,2, \ldots
$$

(Think about the sequence of events (coalescences and mutations) that must occur, as you go back in time, to get the desired event.) What type of probability distribution (name) does K_{i} have?
(b) Compute $P\left(K_{3}=2, K_{2}=6\right)$. What important property are you using?
3. We use a coalescent to study the genealogy of a sample of size $n=4$ from a WrightFisher model with population size $N=10^{6}$ and mutation probability (per individual, per generation) $u=5 \times 10^{-8}$.
(a) Find the expected number of generations until the most recent common ancestor of the sample.
(b) Find the mean and variance of the number of mutations in the sample.

