Mathematical Genetics, Fall 2017, HW 5

Instructions: Do all problems and show your work.

1. Consider the following table of SNP data (with sequence labels on the left and site labels across the top):

	1	2	3	4	5	6
a	G	С	G	Т	Т	А
b	G	С	G	Т	Т	А
С	С	С	G	Т	Т	Т
d	G	G	С	А	А	Т
e	G	G	С	Т	Т	Т

Assume that the **ancestral sequence** is GGGTTT and that we have infinite sites mutation.

- (a) Compute Watterson's estimate of θ .
- (b) Compute Tajima's estimate of θ .
- (c) Compute the (unfolded) site frequency spectrum.
- (d) Compute the numerators for Tajima's D statistic and Fu and Li's D^* .
- (e) Draw a (properly labeled) coalescent tree that is consistent with this data set.

2. Consider a WF model with fast fluctuations in population size, where there are 3 sizes: $N_1 = N$, $N_2 = 4N$, $N_3 = N/2$, and the proportions of time spent at these sizes is 0.2, 0.3, and 0.5, respectively.

(a) In the Kingman coalescent obtained by letting $N \to \infty$, what is the pairwise coalescence rate?

(b) What is the mean time until the first coalescence in a sample of size 10?