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Introduction

We begin by introducing a certain amount of terminology from population ge-
netics.

Every organism is initially, at the time of conception, just a single cell. It
is this cell, called a zygote (and others formed subsequently that have the same
genetic makeup), that contain all the relevant genetic information about an
individual and influences that of its offspring. Thus, when discussing the genetic
composition of a population, it is understood that by the genetic properties of
an individual member of the population one simply means the genetic properties
of the zygote from which the individual developed.

Within each cell are a certain fixed number of chromosomes, threadlike ob-
jects that govern the inheritable characteristics of an organism. Arranged in
linear order at certain positions, or loci, on the chromosomes, are genes, the
fundamental units of heredity. At each locus there are several alternative types
of genes that can occur; the various alternatives are called alleles.

Diploid organisms are those for which the chromosomes occur in homologous
pairs, two chromosomes being homologous if they have the same locus structure.
An individual’s genetic makeup with respect to a particular locus, as indicated
by the unordered pair of alleles situated there, (one on each chromosome), is
referred to as its genotype. Thus if there are 2 alleles A,B at a given locus,
there are 3 genotypes AA, AB, BB.

Haploid organisms, are those for which there is a single chromosome in each
cell. While most organisms of interest are not haploid, if a gene is only mater-
nally or paternally inherited, then for the purposes of studying that locus one
can treat the population as haploid.

The Effects of Genetic Drift

We will assume a reproductive process called the Wright-Fisher model. The
reproductive process can be roughly described as follows.

1. The generations are non overlapping.

2. The population size N is fixed throughout.

3. Each individual has a large number of gametes, haploid cells of the same
gene (neglecting mutation) as that of the zygote. We suppose that the
number of gametes is (effectively) infinite, and are produced without fer-
tility differences, that is, that all genotypes have equal probabilities of
transmitting gametes in this way. The next generation is produced by
sampling N individuals.

The following discussion uses concepts from probability. If you need to re-
view these concepts then you might want to visit the WEB site below. The site
contains an online statistics text. The text is written by Philip B. Stark Depart-
ment of Statistics University of California, Berkeley. Material from Chapters 9,
11 12 are used in the discussion that follows.
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An online statistics text.
http://www.stat.Berkeley.EDU/users/stark/SticiGui/Text/index.htm

Random genetic drift: The mechanism by which genetic variability is lost through
the effects of random sampling.

Objective Questions

1. How likely is an allele to be lost due to genetic drift?

2. How long on average does it take an allele to fix in the population?

For now we restrict attention to the 2 allele Wright-Fisher model with no
mutation. Denote the alleles by A,B. Let Xn be the number of A alleles in the
population in generation n. Assume a population size is N . Denote by

pij = P (Xn = j|Xn−1 = i)

The Wright Fisher model assumptions are equivalent to having each individual
in generation n choose a parent from generation n− 1 at random with replace-
ment. That is, if there are i alleles of type A in generation n − 1 then the
probability πi that a particular individual will be of type A in generation n is
πi = i/N . Therefore, pij follows a binomial probability distribution given by

pij =
(
N

j

)
(πi)

j (1− πi)N−j , 0 ≤ i, j ≤ N. (1)

Exercise 1.1 Suppose N = 3, Use Equation (1) to calculate pij for each of the
16 possibilities. Write your answer in a 4×4 matrix. Calculate P (X2 = 0|X0 =
2).

From the nature of the binomial distribution we have

E(Xn|Xn−1 = i) = N
i

N
= i. (2)

By the definition of conditional expectation we have

E(Xn|Xn−1 = i) =
N∑
j=1

jP (Xn = j|Xn−1 = i) =
N∑
j=1

jpij (3)

By setting the right hand side of Equation (2) equal to the right hand side of
(3) we get

i =
N∑
j=1

jpij (4)
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It follows from (2) that

E(Xn) =
∑N
i=1E(Xn|Xn−1 = i)P (Xn−1 = i)

=
∑N
i=1 iP (Xn−1 = i)

= E(Xn−1).

By the same argument E(Xn−1) = E(Xn−2), so we can conclude

E(Xn) = E(Xn−1) = · · · = E(X0).

This result can be thought of as the analog of the Hardy-Weinberg observation
that in an infinitely large random mating population, the relative frequencies of
the alleles remains constant in every generation.

We are now ready to answer question (1). We begin by calculating ai which
is the probability that eventually the population contains only A alleles, given
that X0 = i. The standard way to find such a probability is to condition on the
value of X1. That is, the population could go from i type A alleles to j type A
alleles in the first generation and then the j type A alleles eventually become
fixed. Considering each j between 0 and N gives

ai =
N∑
j=0

pijaj (5)

where a0 = 0 and aN = 1. Now recall equation (4). Divide both sides of (4) by
N to get

i/N =
N∑
j=0

pij(j/N).

Therefore ai = i/N is a solution to (5). Since (5) represents a system of N − 1
linear equations with N − 1 unknowns, it is not difficult to show that the above
solution is unique. We have now shown that the probability that a particular
allele with i representatives will eventually fix in a population of size N is i/N .
Therefore, the probability that an allele with frequency i will be lost due to
genetic drift is 1− i/N .

We have seen that variability is lost from the population. How long does
fixation take? First we find an equation satisfied by mi, the mean time to
fixation starting from X0 = i. To do this, notice first that m0 = mN = 0. Now
condition on the first step. If the population goes from i type A alleles to j A
(assume j 6= N) alleles in the first generation, then the mean time to fixation is
1 +mj . Averaging over all possible first generations gives

mi = pi0 · 1 + piN · 1 +
N−1∑
j=1

pij(1 +mi) = 1 +
N∑
j=0

pijmj (6)
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Exercise 1.2 Solve Equation (6) when N = 3.

For even moderate size N Equation (6) becomes very complicated. An ap-
proximation, valid for large N is the following

mi ≈ −2(i log(i/N) + (N − i) log(1− i/N)).

If you are interested in the details for deriving the above equation, see me. If
i/N = 1/2 then

mi ≈ −2N log(1/2) = 2N log 2 ≈ 1.39N

whereas
m1 ≈ 2 log(N).

The effects of Mutation

Objective Question

1. How does the process of mutation maintain genetic variability?

We suppose that a probability µA > 0 that an A allele mutates to a B allele
in a single generation, and the probability µB > 0 that a B allele mutates to an
A. The stochastic model for Xn given Xn−1 is the same described in (1), but
where

πi =
i

N
(1− µA) +

(
1− i

N

)
µB .

Mutation changes the nature of the process in a very significant way. In the
no mutation model, eventually one allele fixes in the population and the other
allele goes away. In mathematics we refer to this as an absorbing boundary. In
the process with mutation from A to B and B to A one allele can never remain
fixed forever. If by chance the population is, at some point in time, fixed with
type A, then eventually one of the alleles in the population will mutate back to
a B. Processes of this type have the property that as n→∞ then Xn converges
to a random variable X. We call the probability distribution of X the stationary
distribution.

We will now calculate the E(X). First note that by the same argument used
in (2) we get

E(Xn|Xn−1 = i) = Nπi = N

(
i

N
(1− µA) +

(
1− i

N

)
µB

)
= i(1−µA−µB)+NµB .

Therefore,

E(Xn|Xn−1) = Xn−1(1− µA − µB) +NµB .

and
E(Xn) = E(E(Xn|Xn−1)) = E(Xn−1)(1− µA − µB) +NµB
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At stationarity limn→∞E(Xn) = limn→∞E(Xn−1) = E(X). This implies

E(X) = E(X)(1− µA − µB) +NµB

and solving for E(X) gives

E(X) =
NµB

µB + µA
.

Prospective versus Retrospective

The theory of population genetics developed in the early years of this century
focused on a prospective treatment of genetic variation. Given a stochastic model
for the evolution of gene frequencies one can ask questions like ‘How long does
a new mutant survive in the population?’ ‘What is the chance that an allele
becomes fixed in the population?’. These questions involve the analysis of the
future behavior of a system given initial data. In this section we studied the
two allele Wright-Fisher model. As a result we got a taste of the prospective
treatment for this simple model. Most of the theory is much easier to think
about if the focus is retrospective. Rather than ask where the population will
go, ask where it has been. We shall see that the retrospective approach is very
powerful and technically simpler. In the rest of the notes we will take this view.

The coalescent

Introduction

In 1982 John Kingman, inspired by his friend Warren Ewens, took to heart
the advice of Danish philosopher Soren Kierkegaard and realized that “Life can
only be understood backwards, but it must be lived forwards.” Applying this
perspective to the world of population genetics led him to the development of
the coalescent, a mathematical model for the evolution of a sample of individuals
drawn from a larger population. The coalescent has come to play a fundamental
role in our understanding of population genetics and has been at the heart of a
variety of widely-employed analysis methods. For this it also owes a large debt
to Richard Hudson, who arguably wrote the first paper about the coalescent that
the non-specialist could easily understand. Here we introduce the coalescent,
summarize its implications, and survey its applications.

The central intuition of the coalescent is driven by parallels with pedigree-
based designs. In those studies, the shared ancestries of the sample members, as
described by the pedigree, are used to inform any subsequent analysis, thereby
increasing the power of that analysis. The coalescent takes this a step further by
making the observation that there is no such thing as unrelated individuals. We
are all related to some degree or other. In a pedigree the relationship is made
explicit. In a population-based study the relationships are still present, albeit
more distant, but the details of the pedigree are unknown. However, it remains
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the case that analyses of such data are likely to benefit from the presence of a
model that describes those relationships. The coalescent is that model.

Motivating problem

Human evolution and the infinitely- many-sites model

One of the signature early applications of the coalescent was to inference regard-
ing the early history of humans. Several of the earliest data-sets consisted of
short regions of mitochondrial DNA [mtDNA] or Y chromosome. Since mtDNA
is maternally inherited it is perfectly described by the original version of the
coalescent, with its reliance upon the existence of a single parent for each in-
dividual and its recombination-free nature. To motivate what follows, here we
consider one of those early data sets.

The data in the following example comes from Ward et. al. (1991). The
data analysis and mathematical modeling comes from a paper by Griffiths and
Tavaré (1994).

Mitochondria DNA ( mtDNA) comprises only about 0.00006% of the total
human genome, but the contribution of mtDNA to our understanding of hu-
man evolution far outweighs its minuscule contribution to our genome. Human
mitochondrial DNA, first sequenced by Anderson et.al. (1981), is a circular
double-stranded molecule about 16,500 base pairs in length, containing genes
that code for 13 proteins, 22 tRNA genes and 2 rRNA genes. Mitochondria
live outside the nucleus of cells. One part of the molecule, the control region
(sometimes referred to as the D-loop), has received particular attention. The
region is about 1,100 base pairs in length.

As the mitochondrial molecule evolves, mutations result in the substitution
of one of the bases A,C,G or T in the DNA sequence by another one. Transver-
sions, those changes between purines (A,G) and pyrimidines (C,T), are less
frequent than transitions, the changes that occur between purines or between
pyrimidines.

It is known that base substitutions accumulate extremely rapidly in mito-
chondrial DNA, occurring at about 10 times the rate of substitutions in nuclear
genes. The control region has an even higher rate, perhaps on order of magni-
tude higher again. This high mutation rate makes the control region a useful
molecule with which to study DNA variation over relatively short time spans,
because sequence differences will be found among closely related individuals. In
addition, mammalian mitochondria are almost exclusively maternally inherited,
which makes these molecules ideal for studying the maternal lineages in which
they arise. This simple mode of inheritance means that recombination is es-
sentially absent, making inferences about molecular history somewhat simpler
than in the case of nuclear genes.

In this example, we focus on mitochondrial data sampled from a single North
American Indian tribe, the Nuu-Chah-Nulth from Vancouver Island. Based
on the archaeological records (cf. Dewhirst, 1978), it is clear that there is a
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remarkable cultural continuity from earliest levels of occupation to the latest.
This implies not only that there was no significant immigration into the area
by other groups, but that subsistence pattern and presumably the demographic
size of the population has also remained roughly constant for at least 8,000
years. Based on the current size of the population that was sampled, there are
approximately 600 women of child bearing age in the traditional Nuu-Chah-
Nulth population.

The original data, appearing in Ward et. al. (1991) comprised a sample of
mt DNA sequences from 63 individuals. The sample approximated a random
sample of individuals in the tribe, to the extent to which this can be experimen-
tally arranged. Each sequence is the first 360 basepair segment of the control
region. The region comprises 201 pyrimidine sites and 159 purine sites; 21 of
the pyrimidine sites are variable (or segregating), that is, not identical in all 63
sequences in the sample. In contrast, only if 5 of the purine sites are variable.
There are 28 distinct DNA sequences (hereafter called lineages) in the data. Be-
cause, no transversions are seen in these data each DNA site is binary, having
just two possible bases at each site.

To keep the presentation simple, we focus on one part of the data that seems
to have a relatively simple mutation structure. We shall assume that substitu-
tions at any nucleotide position can occur only once in the ancestry of the
molecule. This is called the infinitely- many-sites assumption. Hence we
have eliminated lineages in which substitutions are observed to have occurred
more than once. The resulting subsample comprises 55 of the original 63 se-
quences, and 352 of the original 360 sites. Eight of the pyrimidine segregating
sites were removed resulting in a set of 18 segregating sites in all; 13 of these sites
are pyrimidines, and 5 are purines. These data are given in Table 1, subdivided
into sites containing purines and pyrimidines. Each row of the table represents
a distinct DNA sequence, and the frequency of these lineages are given in the
right most column of the table.

What structure do these sites have? Because of the infinitely-many-sites
assumption, the pattern of segregating sites tells us something about the mu-
tations that have occurred in the history of the sample. Next we consider an
ancestral process that could have given rise the observed pattern of variability.
This is called the coalescent.

The coalescent process, which we will discuss in some detail as the course
goes on, is a way to describe the ancestry of the sample. The coalescent has
a very simple structure. Ancestral lines going backward in time coalesce when
they have a common ancestor. Coalescence occur only between pairs of individ-
uals. This process may also be thought of as generating a binary tree, with the
leaves representing the sample sequences and the vertices where ancestral lines
coalesce. The root of the tree is the most recent common ancestor (MRCA) of
the sample.

Example 1 To get an idea for building trees from sequences we begin with a
simple example. Consider just the segregating purines of lineage b, c, d, e from
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Table 1. Below is this reduced data set.

Site 1 2 3 4
lineage
b A G G A
c G A G G
d G G A G
e G G G A

b

•1

e c

•2

d

•3

4 •

Figure 1: A tree consistent with the data in Example 1.

Suppose G G G G is the ancestral sequence to the four lineages. Figure 1
represents one possible evolutionary scenario connecting the individuals in the
sample. The • represents a mutation. The number next to the • represents
the position of the mutation. We read the tree diagram in Figure 1 as follows.
Start at the ancestral tip of the tree. The first event to occur is a split in the
ancestral line. Next a mutation occurs and a G mutates to an A at position
4. This mutation is passed on to lineage b and e. The tree splits again and
a mutation occurs at site 2 in lineage c. Next, a mutation occurs at site 3
in lineage d. The final split in the tree separates lineage b and e. The last
evolutionary event is a mutation at site 1 in lineage b.

A coalescent tree consistent with the data in Table 1 is given below
A rooted and unrooted gene tree consistent with the data in Table 1 is given

below.

Exercise 1 Convince yourself that Figure 2. represents a coalescent tree that
is consistent with the data given in Table 1. Use the most frequently occurring
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0•

a b

•10

•1

e f

•5

•6

•4

•14

c

•2

l g h

•13

•12
•11

j i

•17

•16

•18

m

•8

n

•7

•15

d

•9

•3

k

Figure 2: A tree consistent with data in Table 1.

basepair at each site as the ancestral sequence. Describe each event that lead to
the sample. Construct another coalescent tree that is consistent with the data.

Exercise 2 Since mutations can occur only once in a given site, there is an
ancestral type and a mutant type at each segregating site. For the moment
assume we know which is which, and label the ancestral type is 0 and the
mutant type as 1. To fix ideas, take each column of the data in Table 1 and
label the most commonly occurring base as 0, the other as 1. Construct a matrix
of 0’s and 1’s for the data in Table 1 in the manner described above.

The matrix of 0’s and 1’s can be represented by a rooted tree by labeling
each distinct row by a sequence of mutations up to the common ancestor. These
mutations are the vertices in the tree. This rooted tree is a condensed description
of the coalescent tree with its mutations, and it has no time scale in it. Figure
3 represents a rooted condensed tree consistent with the data in table 1.
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•18
d

•3
•9

•0

Figure 3: Rooted gene tree.

Exercise 3 Verify that Figure 3 and Figure 4 are consistent with the data.
Take lineages a, b, c, d, j and draw the rooted condensed tree for this subset of
individuals.

Of course, in practice we never know which type at a site is ancestral. All
that can be deduced then from the data are the number of segregating sites
between each pair of sequences. In this case the data is equivalent to an unrooted
tree whose vertices represent distinct lineages and whose edges are labeled by
mutations between lineages. The unrooted tree corresponding to the rooted tree
in Figure 3 is shown in Figure 4. All possible rooted trees may be found from
an unrooted tree by placing the root at a vertex or between mutations, then
reading off mutation paths between lineages and the root.

Exercise 4 Construct three rooted trees consistent with the unrooted tree in
Figure 4.

We will return to this example later in the course. At that time we will
address the problem of estimating the mutation rate, and predicting the time
back to the most recent common ancestor. The example illustrates how to
connect DNA sequence data to the ancestry of the individuals in the population.

Two technical results

It is convenient to start with two technical results, one of which will be relevant
for approximations in the coalescent associated with the Wright-Fisher model.

We consider first a Poisson process in which events occur independently
and randomly in time, with the probability of an event in (t, t+ δt) being aδt.
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Figure 4: Unrooted gene tree.

(Here and throughout we ignore terms of order (δt)2.) We call a the rate of the
process. Standard Poisson process theory shows that the density function of the
(random) time X between events, and until the first event, is f(x) = a e−ax,
and thus that the mean time until the first event, and also between events, is
1/a.

Consider now two such processes, process (a) and process (b), with respective
rates a and b. From standard Poisson process theory, given that an event occurs,
the probability that it arises in process (a) is a/(a + b). The mean number of
“process (a)” events to occur before the first “process (b)” event occurs is a/b.
More generally, the probability that j “process (a)” events occur before the first
“process (b)” event occurs is

b

a+ b

( a

a+ b

)j
, j = 0, 1, . . . . (7)

The mean time for the first event to occur under one or the other process is
1/(a+ b). Given that this first event occurs in process (a), the conditional mean
time until this first event occurs is equal to the unconditional mean time, namely
1/(a+ b). The same conclusion applies if the first event occurs in process (b).

Similar properties hold for the geometric distribution. Consider a sequence
of independent trials and two events, event A and event B. The probability
that one of the events A and B occurs at any trial is a+ b. The events A and B
cannot both occur at the same trial, and given that one of these events occurs
at trial i, the probability that it is an A event is a/(a+ b).

Consider now the random number of trials until the first event occurs. This
random variable has geometric distribution, and takes the value i, i = 1, 2, . . . ,
with probability (1− a− b)i−1(a+ b). The mean of this random variable is thus
1/(a+b). The probability that the first event to occur is an A event is a/(a+b).
Given that the first event to occur is an A event, the mean number of trials
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before the event occurs is 1/(a+ b). In other words, this mean number of trials
applies whichever event occurs first. The similarity of properties between the
Poisson process and the geometric distribution is evident.

The coalescent model - no mutation

With the above results in hand, we first describe the general concept of the
coalescent process. To do this, we consider the ancestry of a sample of n genes
taken at the present time. Since our interest is in the ancestry of these genes,
we consider a process moving backward in time, and introduce a notation ac-
knowledging this. We consistently use the notation τ for a time in the past
before the sample was taken, so that if τ2 > τ1, then τ2 is further back in the
past than is τ1.

We describe the common ancestry of the sample of n genes at any time τ
through the concept of an equivalence class. Two genes in the sample of n are
in the same equivalence class at time τ if they have a common ancestor at this
time. Equivalence classes are denoted by parentheses: Thus if n = 8 and at
time τ genes 1 and 2 have one common ancestor, genes 4 and 5 a second, and
genes 6 and 7 a third, and none of the three common ancestors are identical,
the equivalence classes at time time τ are

(1, 2), (3), (4, 5), (6, 7), (8). (8)

Such a time τ is shown in Figure 5.
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Figure 5: The coalescent
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We call any such set of equivalence classes an equivalence relation, and denote
any such equivalence relation by a Greek letter. As two particular cases, at time
τ = 0 the equivalence relation is φ1 = {(1), (2), (3), (4), (5), (6), (7), (8)}, and at
the time of the most recent common ancestor of all eight genes, the equivalence
relation is φn = {(1, 2, 3, 4, 5, 6, 7, 8)}. The coalescent process is a description of
the details of the ancestry of the n genes moving from φ1 to φn.

Let ξ be some equivalence relation, and η some equivalence relations that
can be found from ξ by amalgamating two of the equivalence classes in ξ. Such
an amalgamation is called a coalescence, and the process of successive such
amalgamations is called the coalescence process. It is assumed that, if terms of
order (δτ)2 are ignored, and given that the process is in ξ at time τ ,

Prob (process in η at time τ + δτ) = δτ, (9)

and if j is the number of equivalence classes in ξ,

Prob (process in ξ at time τ + δτ) = 1− j(j − 1)
2

δτ. (10)

The above assumptions are clearly approximations for any discrete-time pro-
cess, but they are precisely the assumptions needed for the Wright-Fisher ap-
proximate coalescent theory. However, the rates are determined by considering
a time scale. We know investigate this time scale.

Time Scale

In an evolutionary setting the most convenient way to think about time is to
count the number of generations. To convert from generations to years we simply
multiply be the mean lifespan of the species. For instance, if two individuals
have a common ancestor 10 generations into the past, and the average lifespan
of the species is 30 years, then the common ancestor lived (roughly) 300 years
ago.

A mathematically convenient time scale is to measure time in units of N
generations, where N is the population size. In this time scale one unit of time
is equal to N generations.

Example 3.1 In a population of size 1000, if t = 1/2 a unit of time has elapsed
then 500 generations have passed.

Note that in this time scale a small value for t can represent a fairly large
number of generations. We will typically derive results under the mathemati-
cally convenient time scale and then convert back to years or generations.

Ancestry of a Sample

Reproduction The most celebrated model for reproduction in population ge-
netics is the Wright-Fisher model. Recall the assumptions of the model are as
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follows.

Each individual in the present generation chooses its parent at random from
the N individuals of the previous generation. Choices for different individuals
are independent, and independent across generations.

Individuals are related through their ancestry and ancestry is revealed through
observed mutations. It is convenient to initially separate the mutation process
from the ancestral process. For now we will consider only the ancestral process
associated with the Wright-Fisher model of reproduction.

First consider a sample of size n = 2. How long does it take for the sample
of two genes to have its first common ancestor? First we calculate

P (2 individuals have 2 distinct parents ) =
(

1− 1
N

)
.

Since those parents are themselves a random sample from their generation, we
may iterate this argument to see that

P (First common ancestor more than r generations ago) =
(

1− 1
N

)r
Let T2 be the number of generations back into the past until two individuals
have a common ancestor, then

P (T2 > r) = P (First common ancestor more than r generations ago) =
(

1− 1
N

)r
By rescaling time in units of N generations, so that r = Nt,and letting N →∞
we see that this probability is(

1− 1
N

)Nt
→ e−t

Thus the time until the first common ancestor of the sample of two genes has
approximately an exponential distribution with mean 1. what can be said of a
sample of three genes? We see that the probability that the sample of three has
distinct parents is (

1− 1
N

)(
1− 2

N

)
Let T3 be the number of generations back in time until a two of three genes have
a common ancestor. Applying the iterative argument above one more time, we
see that

P (T3 > r) =
[(

1− 1
N

)(
1− 2

N

)]r

=
(

1− 3
N

+
2
N2

)r
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Rescaling time once more in units of N generations, and taking r = Nt, shows
that for large N this probability is approximately e−3t.

Now consider a sample of size n drawn from a population of size N evolving
according the assumptions of the Wright-Fisher Model. The stochastic process
that describes the ancestry of the sample is called the n coalescent. It is a
mathematical approximation, valid for large N .

The coalescent process defined by (9) and (10)consists of a sequence of n−1
Poisson processes, with respective rates j(j−1)/2, j = n, n−1, . . . , 2, describing
the Poisson process rate at which two of these classes amalgamate when there
are j equivalence classes in the coalescent. Thus the rate j(j − 1)/2 applies
when there are j ancestors of the genes in the sample for j < n, with the rate
n(n− 1)/2 applying for the actual sample itself.

The Poisson process theory outlined above shows that the time Tj to move
from an ancestry consisting of j genes to one consisting of j − 1 genes has an
exponential distribution with mean 2/{j(j − 1)}. Since the total time required
to go back from the contemporary sample of genes to their most recent common
ancestor is the sum of the times required to go from j to j − 1 ancestor genes,
j = 2, 3, . . . , n, the mean E(TMRCAS) is, immediately,

TMRCAS = Tn + Tn−1 + · · ·+ T2 (11)

It follows that

E(TMRCAS) =
n∑
k=2

E(Tk)

=
n∑
k=2

2
k(k − 1)

= 2
n∑
k=2

(
1

k − 1
− 1
k

)

= 2
(

1− 1
n

)

(12)

Therefore
1 = E(T2) ≤ E(TMRCAS) < 2

Note that TMRCAS is close to 2 even for moderate n.

Example 2 Again consider a sample of n = 30 Nuu-Chah females in a pop-
ulation of N = 600. The mean time to a common ancestor of the sample is

2(1− 1
30

) = 1.933 (1160 generations) and the mean time to a common ancestor

of the population is 2(1− 1
600

) = 1.997 (1198 generations). The mean difference



18

between the time for a sample of size 30 to reach a MRCA, and the time for the
whole population to reach its MRCA is 0.063, which is about 38 generations.

Warning The above calculations are not based on any of the basepair sequence
information in the Nuu-Chah data set. They can only be viewed as crude guesses
as to what one might expect from an unstructured randomly mating population.
We will see later that our predictions can be refined once we fit the data to the
model.

Note that T2 makes a substantial contribution to the sum in (12) for TMRCAS.
For example, on average for over half the time since its MRCA, the sample will
have exactly two ancestors.

Further, using independence of the Tk,

Var(TMRCAS) =
n∑
k=2

Var(Tk)

=
n∑
k=2

(
2

k(k − 1)

)2

= 8
n−1∑
k=1

1
k2
− 4

(
1− 1

n

)(
3 +

1
n

)
.

It follows that

1 = Var(T2) ≤ Var(TMRCAS) ≤ lim
n→∞

Var(TMRCAS) = 8
π2

6
− 12 ≈ 1.16.

Exercise 5 Calculate the mean and standard deviation of the time to the MRCA
of a population of N = 600. Express your answer in units of generations.

Lineage Sorting–an application in phylogenetics

Now focus on two particular individuals in the sample and observe that if these
two individuals do not have a common ancestor at t, the whole sample cannot
have a common ancestor. Since the two individuals are themselves a random
sample of size two from the population, we see that

P (TMRCAS > t) ≥ P (T2 > t) = e−t,

it can be shown that

P (TMRCAS > t) ≤ 3(n− 1)
n+ 1

e−t (13)
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and so

e−t ≤ P (TMRCAS > t) ≤ 3e−t (14)

The coalescent provides information on the history of genes within a pop-
ulation or species; by contrast, phylogenetic analysis studies the relationship
between species. Central to a phylogenetic analysis of molecular data is the
assumption that all individuals within a species have coalesced to a common
ancestor at a more recent time point than the time of speciation, see Figure
6 for an illustration. If this assumption is met then it does not matter which
homologous DNA sequence region is analyzed to infer the ancestral relationship
between species. The true phylogeny should be consistently preserved regardless
of the genetic locus used to infer the ancestry. If there is a discrepancy between
the inferred phylogeny at one locus versus another then that discrepancy can be
explained by the stochastic nature of statistical inference. However, the within
species ancestry and the between species ancestry are not always on different
time scales and completely separable. It is possible that a particular homolo-
gous region of DNA used to produce a phylogeny between species could produce
a different phylogeny than a different homologous region and the difference is
real (see Figure 7). One explanation of this phenomena is called lineage sorting
and it occurs when the time to speciation is more recent than the time to the
most recent common ancestry of the gene. This makes it appear like two sub-
populations from the same species are more distantly related than two distinct
species.

T2

T1

t

Figure 6: t: time to speciation, T1: Time to common ancestor for population
1, T2: Time to common ancestor for population 2. Population coalescence does
not predate speciation.
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T2

t

T1

Figure 7: Population coalescence predates speciation.

However, the coalescent model can actually help determine if lineage sorting
is plausible. For example, if based on external evidence, (possibly fossil evi-
dence) the time to speciation is at least u generations into the past, then it is
reasonable to ask, how likely is it that a population has not reached a com-
mon ancestor by time u. Converting from generations to coalescent the time
scale, define t = u/2Ne. If T is the time it takes a population to reach a com-
mon ancestor, then we can use equation (14) to determine if lineage sorting is a
reasonable explanation. If 3e−t is small, then coalescent time scale and the phy-
logenetic time scales are likely to be different and lineage sorting is likely not to
be the appropriate explanation. Thus another implication of coalescent theory
is that the it provides appropriate insight as to how distantly related genes are
within a species, which can help resolve issues in phylogenetic analysis.

The Effects of Variable Population Size

We study the evolution of a population whose total size varies over time. For
convenience, suppose the model evolves in discrete generations and label the
current generation as 0. Denote by M(t) the number of haploid individuals
in the population t generations before the present. To avoid pathologies, we
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assume that M(t) > 1 for all t.
We assume that the variation in population size is due to either external con-

straints e.g. changes in the environment, or random variation which depends
only on the total population size. This excludes so-called density dependent
cases in which the variation depends on the genetic composition of the popu-
lation, but covers many other settings. We continue to assume neutrality and
random mating.

The usual approach to variable population size models is to approximate
the evolution of the population with variable size by one with an appropriated
constant size. There are various definitions of the appropriate constant or ef-
fective population size Ne; for a fixed time period [0, T ] is defined so that both
populations will have the same reduction in heterozygosity:(

1− 1
Ne

)R
=

R∏
r=1

(
1− 1

M(r)

)
and for large M(r) via the same approximation used in Exercise 3.2

1
Ne

=
1
R

R∑
r=1

1
M(r)

.

This last choice of Ne is the harmonic mean over [1, T ] of the population size.
Among the disadvantages of this approach is the fact that the definition of Ne
depends on a fixed time T , whereas many quantities depend on the evolution
up to some random time.

We shall develop the theory of coalescent for a particular class of population
growth models in which, roughly speaking, all the population sizes are large.
Time will be scaled in units of N = M(0) generations. To this end, define the
relative size function fN (x) by

fN (x) =
M(bNxc)

N

=
M(r)
N

, r
N ≤ x <

r+1
N , r = 0, 1, . . . .

(15)

We are interested in the behavior of the process when the size of each generation
is large, so we suppose that

lim
N→∞

fN (x) = f(x)

exists and is strictly positive for all x ≥ 0.

Example 1 Many demographic scenarios can be modelled in this way. For
an example of geometric population growth, suppose that for some constant
ρ > 0 then

M(r) = bN(1− ρ/N)rc.
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Then
lim
N→∞

fN (x) = e−ρx ≡ f(x), x > 0.

Example 2 A commonly used model is one in which the population has
constant size prior to generation V , and geometric growth from then to the
present time. Thus for some α ∈ (0, 1) then

M(r) =
{
bNαc, r ≥ V
bNαr/V c, r = 0, . . . , V

If we suppose that V = bNvc for some v > 0, so that the expansion started v
coalescent time ago, then

fN (x)→ f(x) = αmin(x.v,1).

The Coalescent in a Varying Environment

Consider first the Wright-Fisher model of reproduction, and note that the proba-
bility that two individuals chosen at time 0 have distinct ancestors r generations
ago is

P (TN2 > r) =
r∏
j=1

(
1− 1

M(j)

)
,

where TN2 denotes the time to the common ancestor of the two individuals and
M(0) = N . Recalling the inequality

x ≤ − log(1− x) ≤ x

1− x
< 1,

we see that

r∑
j=1

1
M(j)

≤
r∑
j=1

log
(

1− 1
M(j)

)
≤

r∑
j=1

1
M(j)− 1

.

Rescaling time so that one unit of time corresponds to N = M(0) genera-
tions, it follows that

lim
N→∞

−
bNtc∑
j=1

log
(

1− 1
M(j)

)
= lim
N→∞

bNtc∑
j=1

1
M(j)

.

Since
bNtc∑
j=1

1
M(j)

=
∫ (bNtc−1)/N

0

dx

fN (x)
,

then

lim
N→∞

P (TN2 > bNtc) = exp
(
−
∫ t

0

λ(u)du
)
,
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where λ(·) is the coalescent intensity function defined by

λ(u) =
1

f(u)
, u ≥ 0.

It is convenient to define

Λ(t) =
∫ t

0

λ(u)du,

the integrated intensity function. In the coalescent time scale with TN2/N → T2

as N∞ we have
P (T2 > t) = exp(−Λ(t)), t ≥ 0.

Example 3 Return to the geometric growth model in Example 1. Note that

f(u) = e−ρu

implying λ(u) = eρu and

Λ(t) =
∫ t

0

eρudu = .

Therefore,

P (T2 > t) = exp(−1
ρ

(eρt − 1).

For instance, under a fixed population size, the chance that it takes more than 1
unit of time (N generations) for two individuals to coalesce is e−1 ≈ .37. Under
a model with geometric growth

P (T2 > 1) = exp(−1
ρ

(eρ − 1).

Now if ρ = 2 then P (T2 > 1) = .041. Therefore, under population growth
concrescences are occuring at a much faster rate, thus it is 9 times more rare
for two individuals to take more than one unit of time to coalesce under a
geometrically increasing population (ρ = 2) compared to the fixed population
size model (ρ = 0).

Algorithm for generating coalescent times for varying pop-
ulation size model

In the last section we discussed the distribution of T2 the time until two in-
dividuals coalesce under a varying population size model. For a sample of n
individuals it is possible to derive the distribution of Tj the time the sample
spends with j distinct ancestors. Unlike the fixed population case, the distri-
bution of Tj will now depend on the time it takes to get to j ancestors. Define
this time to be

Sj = Tn + Tn−1 + . . . , Tj
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It can be shown that

P (Tj > t|Sj+1 = s) = exp
(
−
(
j

2

)
(Λ(s+ t)− Λ(s))

)
The above distribution can be turned into an algorithm for generating co-

alescent times under varying population size model. The algorithm goes as
follows.

Algorithm for generating coalescent times Tn, . . . , T2

1. Generate U1, U2, . . . , Un uniformly distributed random numbers.

2. Set t = 0, j = n

3. Let t∗j = − 2 log(Uj)
j(j−1)

4. Solve for s in the equation

Λ(t+ s)− Λ(t) = t∗j

5. Set

tj = s

t = t+ s

j = j − 1

If j ≥ 2 go to 3. Else return Tn = tn, . . . , T2 = t2

Note that t∗j generated in step 2 above has an exponential distribution with
parameter j(j − 1)/2. If the population size is constant then Λ(t) = t, and so
tj = t∗j

The Coalescent with mutation

We now introduce mutation, and suppose that the probability that any gene
mutates in the time interval (τ + δτ, τ) is (θ/2)δτ. All mutants are assumed to
be of new allelic types. Following the coalescent paradigm, we trace back the
ancestry of a sample of n genes to the mutation forming the oldest allele in the
sample. As we go backward in time along the coalescent, we shall encounter
from time to time a “defining event”, taken either as a coalescence of two lines
of ascent into a common ancestor or a mutation in one or other of the lines of
ascent. Figure 8 describes such an ancestry, identical to that of Figure 5 but
with crosses to indicate mutations.

We exclude from further tracing back any line in which a mutation occurs,
since any mutation occurring further back in any such line does not appear in
the sample. Thus any such line may be thought of as stopping at the mutation,
as shown in Figure 9 (describing the same ancestry as that in Figure 8).
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Figure 8: The coalescent with mutations

If at time τ there are j ancestors of the n genes in the sample, the probability
that a defining event occurs in (τ, τ + δτ) is

1
2
j(j − 1)δτ +

1
2
jθδτ =

1
2
j(j + θ − 1)δτ, (16)

the first term on the left-hand side arising from the possibility of a coalescence
of two lines of ascent, and the second from the possibility of a mutation.

If a defining event is a coalescence of two lines of ascent, the number of lines
of ascent clearly decreases by 1. The fact that if a defining event arises from
a mutation we exclude any further tracing back of the line of ascent in which
the mutation arose implies that the number of lines of ascent also decreases
by 1. Thus at any defining event the number of lines of ascent considered in
the tracing back process decreases by 1. Given a defining event leading to j
genes in the ancestry, the Poisson process theory described above shows that,
going backward in time, the mean time until the next defining event occurs is
2/{j(j+θ−1)}, and that the same mean time applies when we restrict attention
to those defining events determined by a mutation.

Thus starting with the original sample and continuing up the ancestry until
the mutation forming the oldest allele in the sample is reached, we find that the
mean age of the oldest allele in the sample is

2
n∑
j=1

1
j(j + θ − 1)

(17)
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Figure 9: Tracing back to, and stopping at, mutational events

coalescent time units. The value in (17) must be multiplied by 2N to give this
mean age in terms of generations.

The time backward until the mutation forming the oldest allele in the sample,
whose mean is given in (17), does not necessarily trace back to, and past, the
most recent common ancestor of the genes in the sample (MRCAS), and will
do so only if the allelic type of the MRCAS is represented in the sample. This
observation can be put in quantitative terms by comparing the MRCAS given
in (12) to the expression in (17). For small θ, the age of the oldest allele will
tend to exceed the time back to the MRCAS, while for large θ, the converse will
tend to be the case. The case θ = 2 appears to be a borderline one: For this
value, the expressions in (12) and (17) differ only by a term of order n−2. Thus
for this value of θ, we expect the oldest allele in the sample to have arisen at
about the same time as the MRCAS.

The competing Poisson process theory outlined above shows that, given that
a defining event occurs with j genes present in the ancestry, the probability that
this is a mutation is θ/(j − 1 + θ). Thus the mean number of different allelic
types found in the sample is

n∑
j=1

θ

j − 1 + θ
.

The number of “mutation-caused” defining events with j genes present in the
ancestry is, of course, either 0 or 1, and thus the variance of the number of
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different allelic types found in the sample is

n∑
j=1

(
θ

j − 1 + θ
− θ2

(j − 1 + θ)2

)
.

Even more than this can be said. The probability that exactly k of the defin-
ing events are “mutation-caused” is clearly proportional to θk/{θ(θ+ 1) · · · (θ+
n− 1)}, the proportionality factor not depending on θ.

The sample contains only one allele if no mutants occurred in the coalescent
after the original mutation for the oldest allele. Moving up the coalescent, this
is the probability that all defining events before this original mutation is reached
are amalgamations of lines of ascent rather than mutations. The probability of
this is

n−1∏
j=1

j

(j + θ)
=

(n− 1)!
(1 + θ)(2 + θ) · · · (n− 1 + θ)

. (18)

Allele frequencies and site frequencies

Introduction

The current direction of interest in population genetics is a retrospective one,
looking backwards to the past rather than looking forward into the future. This
change of direction is largely spurred by the large volume of genetic data now
available at the molecular level and a wish to infer the forces that led to the
data observed. This data driven modern perspective will be the focus of the
notes that follow.

The material in this section covers both sample and population formulas
relating to the infinitely many alleles model.

Allele frequencies

We first discuss allelic frequencies, for which finding “age” properties amounts to
finding size-biased properties. Kingman’s (1975) Poisson–Dirichlet distribution,
which arises in various allelic frequency calculations, is not user-friendly. This
makes it all the more interesting that a size-biased distribution closely related
to it, namely the GEM distribution, named for Griffiths, (1980), Engen (1975)
and McCloskey (1965), who established its salient properties, is both simple and
elegant. More important, it has a central interpretation with respect to the ages
of the alleles in a population. We now describe this distribution.

Suppose that a gene is taken at random from the population. The probability
that this gene will be of an allelic type whose frequency in the population is x
is just x. In other words, alleles are sampled by this choice in a size-biased way.
The probability that there exists an allele in the population with frequency
between x and x + δx. It follows that the probability the gene chosen is of
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this allelic type is θx−1(1 − x)θ−1xδx = θ(1 − x)θ−1δx. From this, the density
function f(x) of the frequency of this allele is given by

f(x) = θ(1− x)θ−1. (19)

Suppose now that all genes of the allelic type just chosen are removed from
the population. A second gene is now drawn at random from the population and
its allelic type observed. The frequency of the allelic type of this gene among the
genes remaining at this stage can be shown to also be given by (19). All genes of
this second allelic type are now also removed from the population. A third gene
then drawn at random from the genes remaining, its allelic type observed, and
all genes of this (third) allelic type removed from the population. This process
is continued indefinitely. At any stage, the distribution of the frequency of the
allelic type of any gene just drawn among the genes left when the draw takes
place is given by (19). This leads to the following representation. Denote by wj
the original population frequency of the jth allelic type drawn. Then we can
write w1 = x1, and for j = 2, 3, . . .,

wj = (1− x1)(1− x2) · · · (1− xj−1)xj , (20)

where the xj are independent random variables, each having the distribution
(19). The random vector (w1, w2, . . .) then has the GEM distribution.

All the alleles in the population at any time eventually leave the population,
through the joints processes of mutation and random drift, and any allele with
current population frequency x survives the longest with probability x. That
is, since the GEM distribution was found according to a size-biased process,
it also arises when alleles are labeled according to the length of their future
persistence in the population. Reversibility arguments then show that the GEM
distribution also applies when the alleles in the population are labeled by their
age. In other words, the vector (w1, w2, . . .) can be thought of as the vector
of allelic frequencies when alleles are ordered with respect to their ages in the
population (with allele 1 being the oldest).

The elegance of many age-ordered formulae derives directly from the simplic-
ity and tractability of the GEM distribution. We now give two examples. First,
the GEM distribution shows immediately that the mean population frequency
of the oldest allele in the population is

θ

∫ 1

0

x(1− x)θ−1 = 1/(1 + θ), (21)

and more generally that the mean population frequency of the jth oldest allele
in the population is

1
1 + θ

( θ

1 + θ

)j−1

.

Second, the probability that a gene drawn at random from the population is
of the type of the oldest allele is the mean frequency of the oldest allele, namely
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1/(1 + θ), as just shown. More generally the probability that n genes drawn at
random from the population are all of the type of the oldest allele is

θ

∫ 1

0

xn(1− x)θ−1 dx =
n!

(1 + θ)(2 + θ) · · · (n+ θ)
.

The probability that n genes drawn at random from the population are all
of the same unspecified allelic type is

θ

∫ 1

0

xn−1(1− x)θ−1 dx =
(n− 1)!

(1 + θ)(2 + θ) · · · (n+ θ − 1)
.

From this, given that n genes drawn at random are all of the same allelic type,
the probability that they are all of the allelic type of the oldest allele is n/(n+θ).

Ages

We turn now to sample properties, which are in practice more important than
population properties. The most important sample distribution concerns the fre-
quencies of the alleles in the sample when ordered by age. This distribution was
found by Donnelly and Tavaré (1986), who showed that the probability that the
number Kn of alleles in the sample takes the value k, and that the age-ordered
numbers of these alleles in the sample are, in age order, n(1), n(2), . . . , n(k), is

θk(n− 1)!
Sn(θ)n(k)(n(k) + n(k−1)) · · · (n(k) + n(k−1) + · · ·n(2))

, (22)

where Sn(θ) is defined

Sn(θ) = θ(θ + 1)(θ + 2) · · · (θ + n− 1). (23)

.
Several results concerning the oldest allele in the sample can be found from

this formula, or in some cases more directly by other methods. For example,
the probability that the oldest allele in the sample is represented by j genes in
the sample is (Kelly, (1976))

θ

n

(
n

j

)(
n+ θ − 1

j

)−1

. (24)

Further results provide connections between the oldest allele in the sample to
the oldest allele in the population. Some of these results are exact for a Moran
model and others are the corresponding diffusion approximations. For example,
Kelly (1976) showed that in the Moran model, the probability that the oldest
allele in the population is observed at all in the sample is n(2N+θ)/[2N(n+θ)].
This is equal to 1, as it must be, when n = 2N, and for the case n = 1 reduces
to a result found above that a randomly selected gene is of the oldest allelic
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type in the population. The diffusion approximation to this probability, found
by letting N →∞, is n/(n+ θ).

A further result is that in the Moran model, the probability that a gene
seen j times in the sample is of the oldest allelic type in the population is
j(2N + θ)/[2N(n + θ)]. Letting N → ∞, the diffusion approximation for this
probability is j/(n+θ). When n = j this is j/(j+θ), a result found above found
by other methods.

Donnelly (1986)) provides further formulae extending these. He showed, for
example, that the probability that the oldest allele in the population is observed
j times in the sample is

θ

n+ θ

(
n

j

)(
n+ θ − 1

j

)−1

, j = 0, 1, 2, . . . , n. (25)

This is of course closely connected to the Kelly result (24). For the case j = 0
this probability is θ/(n+θ), confirming the complementary probability n/(n+θ)
found above. Conditional on the event that the oldest allele in the population
does appear in the sample, a straightforward calculation using (25) shows that
this conditional probability and that in (24) are identical.

Griffiths and Tavaré (1998) give the Laplace transform of the distribution
of that age of an allele observed b times in a sample of n genes, together with
a limiting Laplace transform for the case when θ approaches 0. These results
show, for the Wright–Fisher model, that the diffusion approximation for the
mean age of such an allele is

∞∑
j=1

4N
j(j − 1 + θ)

(
1−

(n− 1− b+ θ − 1)(j)
(n− 1 + θ − 1)(j)

)
(26)

generations, where a(j) is defined as a(j) = a(a+ 1) · · · (a+ j − 1).

Site (SNP) Frequencies

The length of a coalescent tree is defined to be the sum of all of its branch
lengths and is denoted by Ln which can be determined from the coalescent
times as follows

Ln =
n∑
j=2

jTj ,

where the random variable Tj are independent and have exponential distribution
with rate parameter j(j− 1)/2. If Sn denotes the total number of mutations on
the genealogical tree back to the MRCA of a sample of size n, then conditional
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on Ln, Sn has a Poisson distribution with mean θLn/2. It follows that

E(Sn) = E(E(Sn|Ln))

= E(θLn/2)

=
θ

2
E(

n∑
i=2

iTi)

=
θ

2

n∑
i=2

iE(Ti)

=
θ

2

n∑
i=2

i
2

i(i− 1)

= θ

n−1∑
j=1

1
j

(27)

Notice that for large n then E(Sn) ∼ θ log n.

Example 3 We calculate the mean number of mutations for various sample
sizes, when θ = 4,

Sample θ E(Sn)
size n

10 4 9.21
20 4 11.98
40 4 14.76
45 4 15.23
50 4 15.65
60 4 16.38
100 4 18.42

Recall that E(Sn) is the average number of mutations accumulated by a
sample of size n under the neutral coalescent model. Any given realization
of evolution will produce an Sn that varies around the expected value. The
standard deviation of Sn tells you how much variation to expect. The formula
for standard deviation is STDEV(Sn) =

√
Var(Sn). We will now calculate

Var(Sn). Because Sn arises as a result of two random processes, we need to
account for both processes in our calculation of the variance of Sn. Below is the
formula that is needed to calculate Var(Sn).

Var(Sn) = E(Var(Sn|Ln)) + Var(E(Sn|Ln)). (28)

One way to interpret Equation (28) is as follows. There are two sources of
variation. One is due to fluctuations inherent in the coalescent process and the
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other is due to the fluctuations inherent in the Poisson mutation process. The
term E(Var(Sn|Ln)) can be thought as the contribution of the variance of Sn
attributed to the Poisson mutation process. Var(E(Sn|Ln)) may be though of
as the amount variation due to the coalescent process. Therefore,

Var(Sn) = E(Var(Sn|Ln)) + Var(E(Sn|Ln))

= E

(
θ

2
Ln

)
+ Var

(
θ

2
Ln

)

=
θ

2
E(Ln) +

θ2

4
Var(Ln)

= θ

n−1∑
i=1

1
i

+
θ2

4
Var

(
n∑
i=2

iTi

)

= θ

n−1∑
i=1

1
i

+
θ2

4

n∑
i=2

i2Var (Ti)

= θ

n−1∑
i=1

1
i

+
θ2

4

n∑
i=2

i2
4

i2(i− 1)2

= θ

n−1∑
i=1

1
i

+ θ2
n−1∑
i=1

1
i2

For large n then
Var(Sn) = θ log n+ 2θ2

Below is a table means and standard deviations

n θ E(Sn) Stdev(Sn)
10 4 9.21 6.00
20 4 11.98 6.10
40 4 14.76 6.20
45 4 15.23 6.21
50 4 15.65 6.23
60 4 16.38 6.25
100 4 18.42 6.32

Estimating the parameter θ

We have been investigating the properties of the neutral coalescent. We have
been focusing our efforts on answering the following question: if the neutral
model for evolution with constant mutation rate is a reasonable model, what
can we expect the ancestry of a sample to look like? We found that under
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neutrality coalescence occur at the rate of n(n−1)/2 where n is the sample size.
This means that on average, coalescence occur quickly in the recent past and
then very slowly in the more distant past, as the number of ancestors becomes
small. In fact, on average, half the time back to MRCA is T2 the time for
last two ancestors to coalesce. We found that the average number of mutations
back to the MRCA is proportional to the mutation parameter θ and inversely
proportional to log n.

Of course, averages tell only part of the story. There is a fair amount of
variation about the average. To get a handle on the variation, we calculated
the variance and standard deviation for Tn, the time back to the MRCA, and
the variance and standard deviation of Sn, the number of mutations back to the
MRCA of a sample of size n.

We now want to shift the focus from mathematical modelling to statistical
inference. Rather than ask, ‘for a given mutation parameter, θ, what can we
say about the ancestry of the sample, we now ask the more relevant question,
for a given sample, what can we say about the population. In particular, what
is our best estimate for θ based on information in a sample.

Watterson’s estimator

Under the assumptions of the infinite sites model, the number of segregating
sites is exactly the total number of mutations Sn since the MRCA of the sample.
Recall that

E(Sn) = anθ (29)

where an =
n−1∑
i=1

1
i

and

Var(Sn) = anθ + bnθ
2 (30)

where bn =
n−1∑
i=1

1
i2

.

Define

θ̂S =
Sn
an
.

This is called the segregating sites estimator for θ and goes back to a paper by
Watterson (1975). Note that it follows from (29) that E(θ̂S) = θ. Estimators
of this type are called unbiased. It follows from (30) that

Var(θ̂S) =
1
an
θ +

bn
a2
n

θ2 (31)

It is easy to see that Var(θ̂S)→ 0 as n→∞. Estimators with this property
are said to be consistent. This means that one can attain any level of precision
desired by choosing the sample size sufficiently large. However, don’t expect
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the precision to be much better than half the size of the estimate, unless you
require ridiculously large sample sizes.

Example 4 If it is known that θ is no bigger than 6, using the segregating sites
estimator for θ, how large a sample is required to insure that the error of the
estimate is less than or equal to 1?
Soln. Lets assume that the error of an estimate is 2 standard deviations. If
2 standard deviations is 1 unit, then we want to choose a sample size so that
the standard deviation of the estimate for θ is less than or equal to .5. Using a
conservative initial guess for θ to be 6 we have

.5 =

√
6
an

+
36bn
a2
n

We wish to solve for n in the above equation. To simplify matters lets replace
bn with its upper bound of 2. Therefore

.25 =
6
an

+
72
a2
n

.25a2
n = 6an + 72

Solving the above quadratic equation gives an ≈ 32, implying n ≈ 1.73× 1014.
However, if you require a standard deviation for the estimate to be 2, then the
sample size required for this level of precision is just n = 158.

Pairwise differences

Recall that θ is the expected number of mutations separating two individuals.
So a natural way to estimate θ is to calculate number of mutations separating
individuals two at a time and average over all pairs. This may be thought of as
a sample average used to estimate a population average. To calculate this we
take individuals two at a time. Denote by

Sij = Number of mutations separating individuals i and j.

Under the infinite sites assumption, we can calculate Sij from a sample by
calculating the number of segregating sites between sequences i and j. If we
average Sij over all pairs (i, j), this is called the average number of pairwise
differences. We denote the average number of pairwise differences by.

Dn =
2

n(n− 1)

∑
i≤j

Sij .

Note that we can think of individuals (i, j) as sample of size 2, therefore

E(Sij) = E(S2) = θ.
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Therefore,

E(Dn) =
2

n(n− 1)

∑
i≤j

E (Sij) = θ

Thus, Dn is an unbiased estimator. Tajima (1981) was the first to investigate
the properties of Dn. We will refer to θ̂T = Dn. It is interesting to note that
θ̂T has very poor statistical properties. In fact, θ̂T has higher variance than any
of the other estimators we will consider. Why does an estimator that seems
so natural have such poor properties? The answer lies in the fact that their
is dependence in the data generated by the common ancestral history. This
means that Sij and Skl are positively correlated random variables. As a result
the precision of the estimator Dn will be low.

In fact,

Var(Dn) =
n+ 1

3(n− 1)
θ +

2(n2 + n+ 3)
9n(n− 1)

θ2 (32)

The details for deriving Var(Dn) are left as an exercise (se below)
Note that

lim
n→∞

Var(Dn) =
θ

3
+

2
9
θ2.

The pairwise difference estimate is not consistent. The square root of the above
limit represents the optimal precision one can obtain, regardless of sample size,
using the pairwise difference estimator.
Exercise 6

1. Show that

E(D2
n) =

1
n2(n− 1)2

[
2n(n− 1)E(S2

12) + 4n(n− 1)(n− 2)E(S12S13)

+n(n− 1)(n− 2)(n− 3)E(S12S34)] .

2. Show that E(S2
12) = 2θ2 + θ.

3. It can be shown that

E(S12S13) =
4θ2

3
+
θ

2
,

and

E(S12S34) =
11θ2

9
+
θ

3
.

Use these results to calculate E(D2
n)

4. Show that

Var(Dn) =
n+ 1

3(n− 1)
θ +

2(n2 + n+ 3)
9n(n− 1)

θ2
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Estimating θ in the infinitely many alleles model

For the Wright–Fisher infinitely many alleles model, the conditional distribution
of the vector A = (A1, A2, . . . , An), given the value of Kn, is

Prob{A = a|Kn = k} =
n!

|Skn| 1a12a2 . . . nan a1!a2! . . . an!
, (33)

where a = (a1, a2, . . . , an). This conditional distribution is exact for the Moran
model, and we use it as the basis of the theory for estimating θ in infinitely
many alleles models.

Equation (33) implies that Kn is a sufficient statistic for θ. Standard sta-
tistical theory then shows that, once the observed value kn of Kn is given, no
further information about θ is provided by the various aj values, so that all in-
ferences about θ should be carried out using the observed value kn of Kn only.
This includes estimation of θ or of any function of θ.

Since Kn is a sufficient statistic for θ we can find the maximum likelihood
estimator θ̂K of θ. It is found that this estimator is the implicit solution of the
equation

Kn =
θ̂K

θ̂K
+

θ̂K

θ̂K + 1
+

θ̂K

θ̂K + 2
+ · · ·+ θ̂K

θ̂K + n− 1
. (34)

Numerical calculation of the estimate θ̂k using (34) is usually necessary.

Likelihood and Efficiency

In the last section we considered two estimators for θ that were based on sum-
mary statistics. Noticed that the segregating sites method performed better
than the pairwise difference method. However, both estimators tend to have
fairly high variance. The theory of mathematical statistics provides us with a
lower bound on the variance of all unbiased estimators. This lower bound is
called the Cramèr-Rao lower bound. Efficiency of an estimator is defined to
be the variance of an estimator relative to the minimum variance possible. In
this section we begin with some general results from mathematical statistics.
In particular we establish the Cramèr-Rao lower bound. We then calculate this
lower bound in the context of the neutral coalescent model.

General Set up Let X1, X2, · · · , Xn be a sample of size n with

P (X1 = x1, X2 = x2, . . . , Xn = xn) = f(x1, x2, . . . , xn; θ).

We wish to estimate the parameter θ. An estimate of θ is a function of the data.
Let θ̂ ≡ θ̂(X1, X2, . . . , Xn) be an estimator of θ. An unbiased estimator has the
property that

E(θ̂) = θ.
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Result 1

E

(
∂

∂θ
log f(X1, X2, . . . , Xn; θ)

)
= 0

Proof.
Define

u(x1, x2, . . . , xn; θ) =
∂

∂θ
log f(x1, x2, . . . , xn; θ)

which can also be written as

u(x1, x2, . . . , xn; θ) =
1

f(x1, x2, . . . , xn; θ)
∂

∂θ
f(x1, x2, . . . , xn; θ).

If we define a random variable U = u(X1, X2, . . . , Xn; θ) then

E(U) =
∑

u(x1, x2, . . . , xn; θ)f(x1, x2, . . . , xn)

=
∑ ∂

∂θ
f(x1, x2, . . . , xn; θ)

=
∂

∂θ

∑
f(x1, x2, . . . , xn; θ)

=
∂

∂θ
1

= 0

Result 2

Var
(
∂

∂θ
log f(X1, X2, . . . , Xn; θ)

)
= −E

(
∂2

∂θ2
log f(X1, X2, . . . , Xn; θ)

)
The proof is left as an exercise

Cramèr-Rao Lower Bound. If θ̂ is an unbiased estimator of θ then

Var(θ̂) ≥ 1

−E
(
∂2

∂θ2
log f(X1, X2, . . . , Xn; θ)

)
Proof. Note that

θ = E(θ̂) =
∑

θ̂(x1, x2, . . . , xn)f(x1, . . . , xn; θ)



38

Differentiating the above equation with respect to θ gives

1 =
∑

θ̂(x1, x2, . . . , xn)
∂

∂θ
f(x1, . . . , xn; θ)

=
∑

θ̂(x1, x2, . . . , xn)u(x1, x2, . . . , xn; θ)f(x1, . . . , xn; θ)

= E(Uθ̂)

= Cov(U, θ̂)

The last line follows from the fact that Cov (U, θ̂) = E(Uθ̂)−E(U)E(θ̂). Recall
from Result 1 that E(U) = 0.

Because the correlation coefficient is always between ±1, it follows that

Var(θ̂)Var(U) ≥ [Cov(U, θ̂)]2.

Therefore
Var(θ̂)Var(U) ≥ 1

implying

Var(θ̂) ≥ 1
Var(U)

.

It follows from Result 2 that Var(U) = −E
(
∂2

∂θ2
log f(X1, X2, . . . , Xn; θ)

)
.

Lower bound for the Variance of the mutation parameter θ

Suppose that we assume that every mutation that separates all individuals at a
particular locus in the population is revealed, and the full ancestry is resolved.
Further assume that the number of mutations between each coalescent event is
observable. Define Yj to be the number of mutations that occur during the time
the sample has j distinct ancestors. Therefore, P (Yj = yj) is the probability
that yj mutations occur before a coalescence. This is analogous to flipping an
(unfair) coin and asking what is the probability of getting yj tails before a heads.
This produces the well known geometric distribution given by

P (Yj = yj) =
(

θ

j − 1 + θ

)yj ( j − 1
j − 1 + θ

)
.

Because of independence we can write,

f(y2, y3, . . . , yn; θ) = P (Y2 = y2, Y2 = y3, · · · , Yn = yn; θ)

=
n∏
j=2

P (Yj = yj)

=
n∏
j=2

(
θ

j − 1 + θ

)yj ( j − 1
j − 1 + θ

) (35)
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For notational convenience we will denote the likelihood by

Ln(θ) = f(Y2, Y3, . . . , Yn; θ)

It is easy to check that

∂2

∂θ2
logLn = −Sn

θ2
+

n∑
j=2

Yj + 1
(j − 1 + θ)2

so that

−E
(
∂2

∂θ2
logLn

)
=

∑n−1
1

1
j

θ
−

n∑
j=2

(
θ

j − 1
+ 1
)

1
(j − 1 + θ)2

=
1
θ

n−1∑
j=1

1
j
−
n−1∑
j=1

1
j(j + θ)

=
1
θ

n−1∑
j=1

1
j
− 1
θ

n−1∑
j=1

(
1
j
− 1
j + θ

)

=
1
θ

n−1∑
j=1

1
j + θ

Hence the variance of any unbiased estimators θ̂ of θ satisfies

Var(θ̂) ≥ θ∑n−1
j=1

1
j+θ

≡ Var(θ̂F )

Note that
∑n−1
j=1 1/(θ+j) ≈ log(θ+n). So as n-the number of individuals in the

sample becomes large, the variance of the estimator will decrease at a very slow
rate. The above Cramér-Rao lower bound on the variance shows that among
unbiased estimators the best one can do is this lower bound.

This result is due to Fu and Li (1993). We will refer to the optimal estimator
of Fu and Li as θ̂F . The standard deviation efficiency for the Watterson’s
segregating sites estimator θ̂S and the Tajima’s pairwise differences estimator
θ̂T is given by √

Var(θ̂F )

Var(θ̂S)

and √
Varθ̂F
Varθ̂T
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Figure 10: Relative efficiency of the pairwise differences estimator θ̂T (dashed)
versus the relative efficiency of the segregating sites estimator θ̂S (solid). 0 <
θ < 10 and n = 50.

respectively. What follows are some plots of the standard deviation relative
efficiency for the pairwise difference and segregating sites estimators (see Figure
10).

While it is true that both the ‘best’ estimator and the segregating sites es-
timator have variance that converges to zero at rate log n, the graphs in Figure
11 show that extremely large sample sizes are required before the segregating
sites variance comes close to that of the optimal estimator. However, the Fu
estimator is based on a likelihood (equation 35) that requires knowing the num-
ber of mutations between coalescent events. This is unobservable. To obtain
a maximum likelihood estimate based on observed data, we need to consider a
more computationally intensive approach. To gain some appreciation for the
amount of computation required to implement a maximum likelihood approach,
we begin by considering the full likelihood on a very small data set.

A numerical example using a small data set

Consider the following simple example. We have three sequences and four seg-
regating sites and each sequence has multiplicity unity. Using the binary code
discussed in the exercises we describe the data as follows.

1 0 0 0
0 0 0 1
0 1 1 0
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Figure 11: Relative efficiency of the segregating sites estimator θ̂S as a function
of sample size. Small sample size (left top), moderate sample size (right top)
and large sample size (left bottom).

For convenience, label the segregating sites 1,2,3 and 4 from left to right. There
are five possible labeled rooted trees constructed from the unrooted genealogy.
These five rooted gene trees for this data are shown in Figure 12. The possible
coalescent trees producing Figure 12 are given in Figure 13.

Let T3 be the time during which the sample has three ancestors, and T2

the time during which it has two. By considering the Poisson nature of the
mutations along the edges of the coalescent tree, the probability of each type of
tree can be calculated.

For example, the probability p(1a) of the first labelled tree (a) is

p(a1) = E

[(
e−θT3/2

θT3

2

)2

e−θT2/2e−θ(T2+T3)/2
1
2!

(θ(T2 + T3)/2)2
]

=
θ4

32
E
[
e−θ(3T3/2+T2)T 2

3 (T2 + T3)2
]

=
θ4(17θ2 + 46θ + 32)
27(θ + 1)3(θ + 2)5
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Figure 12: Gene trees consistent with the 4 segregating sites.

We must now do a similar calculation for each of the remaining five coa-
lescent trees and sum the results. While it is indeed possible to calculate the
likelihood explicitly for this extremely small data set, it is clear that a more
feasible approach will be required for more realistic data sets. You can see that
the number of coalescent trees consistent with the data will grow rapidly as we
increase the number of sequences.

Computationally intensive methods

It is not an exaggeration to say that Markov Chain Monte Carlo (MCMC) meth-
ods have revolutionized statistics and are at the heart of many computationally
intensive methods. So it may be surprising to note that the most commonly
used MCMC method, called the Metropolis Hastings Algorithm, is only three
lines of code and the mathematical argument that justifies its legitimacy is only
four lines long. In fact, the ease at which one can produce an MCMC algo-
rithm to address a particular statistical problem can be seen as a drawback.
The simplicity of the algorithm often leads individuals to try MCMC as there
first method toward a solution. However, MCMC should be the algorithm of
last resort. If all else fails, use MCMC. The reason for this is that the MCMC
algorithm is plagued with tricky convergence issues and requires extensive di-
agnostics before one can reliably trust the answer. However, even with all its
potential drawbacks and pitfalls, it is still an incredibly useful tool in statistics.

Since a good deal of this course involves various types of Markov processes,
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Figure 13: Coalescent trees consistent with the gene trees.

it is worth pointing out the distinction between the Markov processes discussed
in detail by Dr. Ewens and Markov Chain Monte Carlo methods discussed
here. The typical approach to stochastic mathematical modeling is to begin
with a probabilistic description of the phenomena of interest. In much of this
course we are concerned with how population factors effect genetic variation
over evolutionary time. Examples of mathematical descriptions that address
this problem include the Moran Model, the Wright-Fisher Model and the general
Cannings Model. These are all Markov models. Within the context of these
models we are interested in long term behavior which often leads to a stationary
distribution of the process of interest. The natural progression of ideas starts
with a Markov model and from this we derive the stationary distribution.

However, MCMC reverses this logical progression and so initially may seem
somewhat contrived. Rather than start with a model and then produce a sta-
tionary distribution as your final answer, in MCMC you start with the what
we will call the target probability distribution and then devise a Markov chain
whose stationary distribution returns you to the probability distribution you
started with. This begs the question, if you know the answer to begin with,
why go through the trouble of devising a Markov chain with a stationary distri-
bution that returns you back to where you started? There are at least two good
answers. 1) There is a difference between knowing the target probability dis-
tribution and being able to simulate data according to that target distribution.
The MCMC algorithm is about simulating data. 2) The most important reason
is in most applications you only know the target distribution up to a constant of
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integration. That constant of integration is often difficult to compute. If π(x)
is the target distribution, then MCMC only requires that you can write down
the likelihood ratio of π(x)/π(y), where the constant of integration cancels.

For a given Markov chain there is at most one stationary distribution, but for
a given stationary distribution there many Markov chains. The art of MCMC is
picking the right chain. Since we get to choose the Markov chain in MCMC and
the Markov chain is just a device for simulating from complex probability distri-
butions, we might as well pick one for which it is easy to establish stationarity.
A reversible Markov chain is the simplest choice. A reversible Markov Chain
with transition probabilities pij has stationary probabilities πi if they satisfy

Detailed Balance Equations given by

πipij = πjpji. (36)

This means that in the long run the Markov chain visits state i followed by state
j with the same probability as it visits state j followed by state i.

Metropolis Hastings Algorithm

Object Simulate a Markov chain with stationary distribution πi, i = 1, . . . ,m
where m is the total number of possibilities. Typically m is quite large.

Method

1. Propose a move from state i to state j with probability qij .

2. Accept the move from i to j with probability

aij = min
{

1,
πjqji
πiqij

}

3. Move with probability pij = qijaij

Then pij = qijaij are the transition probabilities having stationary distribu-
tion π1, π2, . . . , πm.

Many papers and textbooks will state that it is easy to show that the
Metropolis Hastings algorithm follows the Detailed Balance Equations. How-
ever, since it is only four lines of mathematics it is worth taking the time to
actually show that in fact the above algorithm does satisfy the Detailed Balance
Equations. Below we do just that.

With out loss of generality assume that aij < 1 then aji = 1. (This is the
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key observation). Now

πipij = πiqijaij

= πiqij
πjqji
πiqij

= πjqji = πjqjiaji

= πjpji.

Likelihood and the missing data problem

In many situations the data presents an incomplete picture because the prob-
ability of observing the data depends on unobservable random variables which
we call missing data. It is often quite an easy matter to write down a likeli-
hood function for the joint distribution of the observed data together with the
missing data. To get the marginal distribution of the observed data alone you
must ‘average out’ the missing data. This will often involve integration over a
high dimensional space or a sum over a unfathomably large set of possibilities.
Mathematicians realized long ago that summation and integration are really the
same problem. However, that realization does not make the missing data prob-
lem any easier. Two methods for attacking the missing data problem will be
presented here. They are: Markov Chain Monte Carlo (MCMC) (in particular
the the Metropolis Hastings algorithm) and important sampling. Each presents
different solutions to averaging out the missing data. In some sense they are
more about numerical integration than they are about statistics.

General Setup

For modelling the ancestry of a sample of n individuals using the coalescent
process, let D be the observed DNA sequences. What is missing is G, the true
genealogy of the sample. Let θ be the mutation parameter. We will assume
there is a tractable formula for the joint distribution of D and G. That is

P (D,G|θ) = P (D|G, θ)P (G|θ)

where explicit formula exist for P (D|G, θ) and P (G|θ) and so

P (D|θ) =
∑
G

P (D|G, θ)P (G|θ)

Note that the dimension of the space is large. That is there are an enormous
number of possible genealogies G in the sum.

Naive Simulation
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The simplest simulation method is based on the law of large number. We
begin by simulating multiple realizations of the genealogiesG1, G2, · · · , GL using
the distribution P (G|θ0). For a particular value θ0. It follows from the law of
large numbers that that

P (D|θ0) = EG(P (D|G, θ0)) ≈ 1
L

L∑
i=1

P (D|Gi, θ0).

The main problem with this approach is that most terms in the sum are very
close to zero, and in fact many of them may be identically zero. The above
approach requires that one simulate coalescent trees with mutations (this is
relatively easy to do) then calculate the probability of the data given that
tree topology. Most tree topologies are inconsistent with the data and so
P (D|G) = 0 for a large number of G. This suggest that in order to gener-
ate tree topologies consistent with the data we would prefer to simulate missing
data according to P (G|D, θ). Suppose for a moment that this is possible and
G1, G2, . . . , GL are independent copies of G drawn according to the posterior
distribution P (G|D, θ0) for a particular value of θ0. Then

P (D|θ)
P (D|θ0)

=
∑
G

P (G|D, θ)P (D|θ)
P (G|D, θ0)P (D|θ0)

P (G|D, θ0)

≈ 1
L

L∑
i=1

P (Gi|D, θ)P (D|θ)
P (Gi|D, θ0)P (D|θ0)

=
1
L

L∑
i=1

P (D|Gi, θ)P (Gi|θ)
P (D|Gi, θ0)P (Gi|θ0)

(37)

Notice that the above formula is a likelihood ratio
P (D|θ)
P (D|θ0)

and not the likeli-

hood itself. Since the denominator is a fixed constant that does not vary with

θ. The maximum likelihood estimate using
P (D|θ)
P (D|θ0)

will be the same as the

mle using P (D|θ).
The next thing to notice is that one needs only to simulate genealogies for

a single value θ0 to obtain a likelihood curve over a range of θ values. We
call θ0 the driving value. However, the further θ is from θ0 the poorer the
approximation in (37)

Unfortunately, it is impossible to devise a scheme to simulate independent
copies of Gi but we can simulate correlated copies of Gi from the posterior
distribution P (Gi|D) via the Metropolis Hastings algorithm.

For the coalescent model, the states in our process are all possible coalescent
trees consistent with our observed data. The stationary probabilities are given
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by π(G) = P (G|D, θ0) Note that for any two genealogies G1 and G2 we have

π(G1)
π(G2)

=
P (G1|D, θ0)
P (G2|D, θ0)

=
P (D|G1θ0)P (G1|θ0)
P (D|G2, θ0)P (G2|θ0)

.

While we do not have an explicit expression for the conditional probability

P (G|D, θ0) we do have an explicit formula for the likelihood ratio
P (G1|D, θ0)
P (G2|D, θ0)

Important Sampling

The second approach to the problem is to simulate the missing genealogies
according to a distribution that is (in some sense) close to P (G|D, θ), call this
distribution Q(G|D, θ).

In this situation we simulate G1, G2, . . . , GL according to the distribution
Q(G|D, θ0). Note that

P (D|θ) = EQ

(
P (D|G, θ)P (G|θ)

Q(G|D, θ0)

)

=
∑
G

P (D|G, θ)P (G|θ)
Q(G|D, θ0)

Q(G|D, θ0)

≈ 1
L

L∑
i=1

P (D|Gi, θ)P (Gi|θ)
Q(Gi|D, θ0)

(38)

The above is called important sampling. The idea of the Tavaré Griffiths
important sampling scheme is as follows. Starting with the observed sample,
consider the most recent event that could have given rise to the current data.
That event was either a coalescence or a mutation. Choose one of these ac-
cording to some ‘reasonable probability distribution.’ Proceed one more step
back into the past and pick one of the possible evolutionary events. Continue
choosing until you have chosen a complete genealogical history for your data
set. You have now chosen a genealogy according the the proposal distribu-
tion Q(G|D, θ0). Repeat this process multiple times and use equation (38) to
approximate the likelihood.

Exercise Estimating the time to a common ancestor conditional on the number
of observed segregating sites using MCMC and the coalescent

The goal of this problem is to use a MCMC procedure to estimate the mean
time to the most recent common ancestor for the Nuu-Chah-Nulth Indian Data.
For simplicity we will summarize the data by using only the total number of
segregating sites. We will assume that θ is known. Note that the distribution
of the number of segregating sites is independent of the shape of the tree and
it is only affected by the length of the tree. So the procedure can be roughly
described in the following steps.
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1. Start with a sequence of ‘current’ coalescent times.

2. Propose local changes to the coalescent times. Call these the ‘proposed’
coalescent times.

3. Decide whether to accept the proposed coalescent times or keep the current
coalescent times by comparing the likelihood of observing the data under
each using a version of MCMC called the Metropolis Hastings Algorithm.

4. Calculate Tmrca = T2 + T3 + ...Tn. Save this result

5. Repeat steps 2 through 4 M times and average the saved results .

Below we outline how to accomplish each part of the above procedure.

1. Starting Sequence of Coalescent times
Start with the mean coalescent times. Let T (0)

i = 2
i(i−1) . So T (0)

2 = 1, T (0)
3 =

1/3, T (0)
4 = 1/6 and so on. Let L0 =

∑
iT

(0)
i be the initial length of the tree.

2. Proposed Coalescent Times
Pick a coalescent time X, where the probability that X = i is P (X = i) =

iTi/L. Replace TX with T ′X where T ′X is generated according to an exponential
distribution with mean 2/(X(X − 1)). Define L′ = 2T2 + 3T3 + · · · + XT ′X +
· · ·+ nTn as the proposed length of the coalescent tree.

3. MCMC
If s is the observed number of segregating sites and L is the length of the

tree, then s has a Poisson distribution. That is

p(s|L) = e−
θ
2L

((θ/2)L)s

s!
.

If L is the current tree length and L′ defined in 2. is the proposed tree length,
then comparing the relatively likelihood of the data under the two tree lengths
leads to the following acceptance probability

A = min

{
1,
e−

θ
2L

′
(θL′)s(XT ′X/L

′)

e−
θ
2L(θL)s(XTX/L)

}
= min

{
1, e

θ
2 (L−L′)(L′/L)s−1(T ′X/TX)

}
Write a short program to estimate the mean time to the most recent com-

mon ancestor conditional on observing 18 segregating sites for the sample of
55 sequences given in the Nuu-Chah-Nulth data set. Use the segregating sites
estimate for θ that you calculated in the previous homework.
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Software review

Simulation software

One of the main uses of the coalescent is as a method for efficient simulation of
data-sets. As such it can be used as a tool in power studies, or for evaluating the
efficiency of methods that estimate parameters from genetic data. In this section
we list just some of the software available. We begin with programs that simulate
the full coalescent model. However, there has been a recent trend to develop
algorithms that approximate the coalescent in order to improve computational
efficiency in contexts that had previously been intractable (such as for genome-
wide data), so we go on to include examples of this trend. For a more full review
of this field, see [11]

We first list the coalescent-based simulators:

• By far the most popular coalescent simulation software is ms, due to
Richard Hudson [24]. This allows simulation of the coalescent for a va-
riety of differing demographic scenarios. More latterly, the software has
been broadened to include recombination and gene conversion hotspots,
in the form of the msHot software of Hellenthal & Stephens [20]. Both are
available at http://home.uchicago.edu/∼
rhudson1/source/mksamples.html.

• The SelSim software of Spencer & Coop [64] allows for coalescent-based
simulation of populations experiencing natural selection and recombina-
tion.

Available at: http://www.stats.ox.ac.uk/mathgen/software.html.

• Users wishing to simulate more complex demographic settings might make
use of SIMCOAL 2.0, a package due to Laval & Excoffier [32], which allows
for arbitrary patterns of migration within complex demographic scenarios.

Available at: http://cmpg.unibe.ch/software/simcoal2/.

• The GENOMEPOP software of Cavajal-Rodriguez [3] also allows for complex
demographic scenarios, but is aimed at simulating coding regions. It is
available at: http://darwin.uvigo.es/.

• In [33], Li & Stephens introduced an urn-model that approximates the
coalescent. The goal is to produce data that will closely approximate
that resulting from the coalescent, but at much greater computational
efficiency. While no software is available, this elegant construction has
been used to simulate data for power studies (e.g., [8]), and forms the
back-bone for data imputation schemes [59, 35].

• Another approximation to the coalescent was introduced by McVean &
Cardin [38] and Marjoram & Wall [37]. Software for the latter (FastCoal)
is available at

http://chp200mac.hsc.edu/Marjoram/Software.html.
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We now list a couple of the forward-simulation algorithms:

• simuPOP is a program due to Peng & Kimmel [52] that allows a good degree
of flexibility via the use of user-written Python scripts. It is available at:
http://simupop.sourceforge.

• The FREGENE software of Hoggart et al., [21] uses a re-scaling of population
size to provide extremely efficient forward simulation of large data-sets. It
is available at http://www.ebi.ac.uk/projects/BARGEN.

Parameter Estimation Software

One use for the coalescent is as a simulation tool (see previous section). However,
it is also widely-used as the foundation for model-based analysis, for example
in parameter estimation. An early approach centered around rejection meth-
ods, where data are simulated under a variety of parameter values, and then
the parameter value that generated each particular instance of those data-sets
is accepted if the data matches that seen in an observed data-set of interest;
otherwise the generating parameter is rejected. Taking a Bayesian perspective,
the set of accepted parameter values then forms an empirical estimate of the
posterior distribution of the parameter conditional on the data. However, in
practical applications, the probability of simulating data identical to the ob-
served data is vanishingly small, even if the correct parameter value is used.
This has provoked a move towards so-called Approximate Bayesian Computa-
tion, in which the requirement for an exact match is relaxed. There has been
widespread interest in this development in recent years, but here, as in most
examples discussed in this section, there is little off-the-shelf software. For most
applications users must write their own code!

A related methodology is that of Markov chain Monte Carlo, Metropolis-
Hastings sampling. Here, at least, there is custom software in the form of
the comprehensive LAMARC package of Felsenstein et al.. This is available from
http://evolution
.gs.washington.edu/lamarc/ and can be used to estimate a variety of population
demographics parameters, such as mutation, recombination and migration rates.
There are also a large number of importance sampling algorithms in existence,
which again estimate a variety of population demographics parameters. A good
example is the GENETREE software of Griffiths et al., which can be found at
http://www.stats.ox.ac.uk/ griff/software.html.
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