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ABSTRACT
We investigate the probability of fixation of a newmutation arising in ametapopulation that ranges over a

heterogeneous selective environment. Using simulations, we test the performance of several approxima-
tions of this probability, including a new analytical approximation based on separation of the timescales of
selection and migration. We extend all approximations to multideme metapopulations with arbitrary
population structure. Our simulations show that no single approximation produces accurate predictions of
fixation probabilities for all cases of potential interest. At the limits of low and high migration, previously
published approximations are found to be highly accurate. The new separation-of-timescales approach
provides the best approximations for intermediate rates of migration among habitats, provided selection is
not too intense. For nonzero migration and relatively strong selection, all approximations perform poorly.
However, the probability of fixation is bounded above and below by the approximations based on low and
highmigration limits. Surprisingly, in our simulations with symmetricmigration, heterogeneous selection in
ametapopulation never decreased—and sometimes substantially increased—the probability of fixation of a
new allele compared to metapopulations experiencing homogeneous selection with the same mean selec-
tion intensity.

THE fate of new alleles is determined by selection,
drift, migration, mutation, and the way these pro-

cesses vary and interact over space and time. Hetero-
geneity is the hallmark of biology at all levels, including
spatial variation in selection. Such spatial heterogeneity
can substantially affect the course of evolution, in-
cluding the probability of fixation of a new mutation.

Oneof themost striking results inpopulation genetics
is that a newmutation, even if it is favorable and arises in
an extremely large population, has a low probability of
fixation. This occurs because, when an allele is rare, it is
present only in a few copies and therefore has a high
probability of leaving no descendants due to the
stochastic nature of reproduction. Haldane (1927, on
the basis of a suggestion from Fisher 1922) showed for
beneficial alleles in an ideal population that the prob-
ability of fixationof anewmutationwas only!2s, where s
is the fitness advantage of a heterozygote carrying the
newmutation.Thus anewmutationwith a 1%advantage
has only an!2% chance of eventual fixation and a 98%
chance of being lost. These results were generalized by
Kimura (1957, 1962) to deleterious alleles, arbitrary
dominance, and nonideal populations. Kimura showed
that even deleterious alleles have a reasonable probabil-
ity of fixation if the effective population size (Ne) is small

enough, an idea that had been proposed qualitatively by
Wright (1931). Kimura used a diffusion approach to
solve the problem, and this has proven to be a powerful
tool for subsequent refinements.

These results, as powerful as they are, apply only to
closed panmictic populations and ignore the fact that
most species are distributed over a spatial range, some-
times subdivided into local populations with nonran-
dom mating among populations. The first study to
compute the probability of fixation in a spatially struc-
tured population was by Maruyama (1970), who found
for the islandmodel that the probability of fixation of an
additively acting beneficial allele is also 2s, unchanged
by the population structure. Nagylaki (1980, 1982)
confirmed this result for all structured populations with
conservativemigration, that is, whenmigration does not
change local population size. (These results also require
that all demes contribute exactly equally to the next
generation on a per capita basis.) Barton (1993)
showed that this ‘‘invariance’’ result fails in two special
cases that include local extinction and recolonization; in
these cases the probability of fixation in a structured
population was not well predicted by 2s.

Whitlock (2003) showed that Kimura’s (1962) dif-
fusion approximation could be extended to a broad
range of structured populations, allowing for arbitrary
dominance, arbitrary sign of selection, and complex
metapopulation structure. These extensions produce
good approximations to the probability of fixation
with extinction and colonization, asymmetric migration
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(such as source-sink dynamics), stepping-stone migra-
tion (with isolation by distance), etc. For example, the
probability of fixation of a new beneficial allele assum-
ing ‘‘soft selection’’ (i.e., selectiondoesnot affect demog-
raphy) is given by 2sNe/NTOT(1 " FST), where NTOT is
the total census size of the metapopulation and FST is
Wright’s standardized description of the genetic vari-
ance among populations.
Importantly, all these authors assumed that the action

of selection is uniform over space—that all localities and
habitats share the samequantitative relationshipbetween
fitness and genotype. Many species span a diversity of
habitats; therefore for many loci the pattern of selection
is expected to vary over space.
Spatially variable selection adds substantial complica-

tion to the calculation of the probability of fixation of
a new mutation in a structured population. Several
approaches to addressing this challenge have been
taken. Pollak (1966) used branching process calcula-
tions to find an expression for the probability of fixation
of an allele that is on average beneficial. Nagylaki
(1980) found in the limit of high migration (in other
words, when there is little effect of the population’s
spatial structure) that the probability of fixation could
be determined by substituting the arithmetic mean
value of the selection coefficient into Kimura’s panmic-
tic formula (in effect, the structure of selection also does
not matter). At the opposite extreme, Tachida and
Iizuka (1991) found the probability of fixation in the
weak migration limit, by assuming that migration was
sufficiently rare that the mutation either fixes or is lost
within each deme between migration events. In this
limit, the probability of fixation of both deleterious and
beneficial alleles is substantially higher than would be
predicted by the mean selection coefficient. Recently,
a more general analytical approach was proposed by
Gavrilets and Gibson (2002), who derived formulas
for the probability of fixation for both beneficial and
deleterious alleles in a symmetric two-deme system.
All of these approaches have limitations. They assume

that the new mutations act additively on fitness, an
assumption that we also make in this article. The branch-
ingprocess results applyonly tobeneficial alleles (Pollak
1966). Tachidaand Iizuka (1991) andNagylaki (1980)
have assumed either very weak or very strong migration,
respectively. They all assume temporal homogeneity,
meaning that the selection coefficients do not change
locally or globally over time. Both Tachida and Iizuka
(1991) and Gavrilets and Gibson (2002) assumed that
there are only two demes in the system, and the latter
article furthermore assumes that the two demes are equal
in size with symmetric migration between them.
In this article, we review and extend results on the

probability of fixation of a new mutation in a heteroge-
neous selective environment. We have four goals. First,
we evaluate existing approximations, using a mixture of
simulation and exactMarkov chain calculations. Most of

the methods in the literature perform well given their
stated assumptions, although there are exceptions.
Second, we extend these results tomore complex spatial
population structures, building on results found in
Whitlock (2003) for uniform selection with complex
population structure. We also relax the symmetry
assumptions of previousmodels and develop new theory
that allows calculation of the probability of fixation with
local extinction, source-sink dynamics, stepping-stone
structure, etc. Third, we seek improved approximations
for the probability of fixation of a new mutation that is
deleterious on average, a case for which we find previous
approximations to be inaccurate. Finally, we use the best
approximations to evaluate the overall effect of spatially
variable selection on the probability of fixation relative
to the fixation probability in a uniform environment
with the samemean selection intensity, with a surprising
conclusion. Spatial heterogeneity in selection increases
the probability of fixation of new alleles, relative to an
allele with the same mean selection coefficient.

METHODS

In this section, we describe a basic model of a spatially
structured population that occupies two ecologically
distinct habitats. We wish to infer the probability of
global fixation of a new mutation that appears in one of
the habitats. We then present several methods that can
be used to assess this probability. Two of the methods,
Monte Carlo simulation and finite Markov chain meth-
ods, are accurate but also highly computationally in-
tensive. Simulations, as tested by comparison to exact
Markov chain calculations, were used to test the accu-
racy of various approximations to the fixation probabil-
ity. These approximations include numerical solution of
a two-dimensional diffusion equation and three analytic
approximations of the solution of this equation. One of
the analytic approximations is a new approach based on
separation of timescales and therefore is developed in
its own subsection. We also extend all the approximate
methods for computing probabilities of fixation, in-
cluding those previously published, to allow unequal
habitat sizes, asymmetricmigration, andmultiple demes
within each habitat type.
Definitions: We limit our attention here to a case

where there are only two kinds of habitats, labeled 1 and
2. These habitats may differ in their selection pressures,
but selection acts additively within each. We consider a
locus at which an ancestral allele and a novel mutant
allele are segregating. The fitnesses of the three diploid
genotypes depend on two selection coefficients s1 and
s2, such that the relative fitnesses of the ancestral
homozygote, heterozygote, and new homozygote are
given by 1:11 si:11 2si in habitat i. Thus, if si . 0, then
the allele is favored by selection in habitat i. If si , 0,
then the new allele is deleterious in the ith habitat. The
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selection coefficients are assumed constant over time. In
practice, we assume that the si are small (see below).

Wewrite pi for themutant allele frequency in habitat i,
and qi ¼ 1 " pi. The number of diploid individuals in
habitat i is held constant and defined as Ni. It is con-
venient to keep track of the proportion of all individuals
that live in habitat 1, and for this we use f, which by
definition is N1/N, where N¼ N1 1 N2. The variance ef-
fective size of the whole system is written as Ne. Migra-
tion occurs between the two habitats, with the backward
migration rate (i.e., the proportion of individuals in pop-
ulation i that are immigrants each generation) given
by mi.

We also use averages of many of these quantities
weighted by habitat frequency, which is indicated by an
overbar. For example, the mean selection coefficient is
given by !s ¼ s1 f1 s2ð1" fÞ, and the mean allele
frequency is given by !p ¼ p1f1 p2ð1" fÞ. Finally, the
(unweighted) difference in allele frequency between
the two habitats is given by d ¼ p1 " p2. Note that if the
system consists of two demes, the population can be
completely described in terms of !p and d because

p1 ¼ !p1 ð1" fÞd and p2 ¼ !p " fd: ð1Þ

Accurate methods: simulations and finite Markov
chains: The simulation program used in Whitlock
(2003) was modified to allow heterogeneous selection
(two different habitats with distinct selection coefficients
in each). Selection can favor or disfavor an allele, and this
can be different in the two different habitat types. The
program also allows for a wide range of possible pop-
ulation demography, ranging from the simple two-deme
symmetric migration case to multiple demes with local
extinction and recolonization, asymmetric migration,
source-sink dynamics, isolation by distance, etc.

These simulations have been extensively checked for
the uniform selection case. Furthermore, the new
simulations with variable selection were validated using
an exact method—finite Markov chain methods (e.g.,
Kemeny and Snell 1976; Ewens 1979)—to compute
fixation probabilities in the two-deme model (details
not shown). In practice, the Markov chain calculations
(implemented in the program Matlab) were computa-
tionally feasible only for demes containing,30 individ-
uals. Extensive checks were performed to compare
simulation results to the exact Markov chain results, to
test the accuracy of the simulation program. In all cases,
the simulations matched the Markov chain results
within the appropriate confidence interval.

High- and low-migration limit approximations: Pre-
vious authors have already determined the probability
of fixation in the limits of very high or very low migra-
tion rates, and we briefly review their findings here.
Nagylaki (1980) found that in the limit of high migra-
tion (m1,m2? js1j, js2j), the probability of fixation canbe
determined from the mean selection coefficient !s, by

uðpÞ ¼ 1" e"4Ne!sp

1" e"4Ne!s
; ð2Þ

where p is the initial frequency of the allele calculated
over the whole metapopulation. In the high-migration
limit, the correlation between the location of an allele
and its selection coefficient is negligible, so any allele
experiences selection in proportion to the mean selec-
tion coefficient.

In contrast, in the limit of low migration, each new
allele is either fixed or lost in a habitat before migration
can carry even a single copy to the other habitat. In this
case the probability of fixation is

u ¼ N1N2u½s1; N1'u½s2; N2'
N1 1N2

! "

3
m2

N1m1u½"s1; N1'1N2m2u½s2; N2'

!

1
m1

N1m1u½s1; N1'1N2m2u½"s2; N2'

"
ð3Þ

(Equation 6 of Tachida and Iizuka 1991), where u[si,
Ni] is the probability of fixation of a single allele in
habitat i with selection coefficient si and effective size
Ne,i. This u[si, Ni] is given by Kimura’s (1964) formula,

u½si ; Ni ' ¼
1" e"2siNe;i=Ni

1" e"4Ne;i si
; ð4Þ

where Ne,i is the local variance effective population size.
Two-deme approximations: The probability of fixa-

tion in the two-deme system with initial frequencies p1
and p2, respectively, can be approximated for general
migration rates by the solution u(p1, p2) of a diffusion
equation. By definition, N1 ¼ fN and N2 ¼ (1 " f)N,
where N is the total population size and f is the relative
frequency of patch 1. In addition, assume that 2Nsi and
2Nmi have finite limits as N / ‘ (call these respective
limits Si and Mi). Rescaling time so that 1 unit corre-
sponds to 2N generations, letting N / ‘, and ignoring
higher-order terms yields the following boundary value
diffusion problem for u(p1, p2), the approximate
probability of fixation in a two-deme system with initial
frequencies p1 and p2,

p1q1
2f

@2u

@p21
1

p2q2
2ð1" fÞ

@2u

@p22
1 S1p1q1 1M1ðp2 " p1Þ

# $@u
@p1

1 ½S2p2q2 1M2ðp1 " p2Þ'
@u

@p2
¼ 0; ð5Þ

with boundary conditions u(0, 0) ¼ 0 and u(1, 1) ¼ 1.
Except for the rescaling, this is identical to Equation 8 in
Tachidaand Iizuka (1991). Note too that we have used
the alternate parameterization N ¼ N1 1 N2 and
f ¼ N1=N to emphasize that N1 and N2 cannot be
varied separately. In addition, solutions to (5) should
yield good approximations provided N is large and the
selection coefficients and migration rates are all of
order N"1 (Karlin and Taylor 1981). To solve this
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system numerically, we used finite differencing (Press
et al. 1992) and sparse matrix functions of the software
package Matlab (Mathworks, Natick, MA).
We obtained analytic approximations to u(p1, p2) by

extending the singular perturbation approach de-
scribed in the Appendix of Gavrilets and Gibson
(2002) to Equation 5, which now accounts for asymmet-
ric migration and unequal population sizes. If the new
mutant is at a net selective advantage over both demes
(i.e., if !s . 0), then the probability of fixation given fre-
quencies p1 and p2 is approximately

uGG
1 ðp1; p2Þ ¼

1" exp½"4N1ðap1 1bp2Þ'
1" exp½"4N1ða1bÞ'

; ð6aÞ

where a and b are positive solutions of the algebraic
system

a2 1aðm1 " s1Þ " bm2 ¼ 0

b2ðN1=N2Þ1bðm1 " s2Þ " am1 ¼ 0:
ð6bÞ

If the new mutant is net deleterious (!s , 0), then the
approximate solution is

uGG
" ðp1; p2Þ ¼

1" exp½4N1ðap1 1bp2Þ'
1" exp½4N1ða1bÞ' ; ð7aÞ

where a and b are positive solutions of

a2 1aðm1 1 s1Þ " bm2 ¼ 0

b2ðN1=N2Þ1bðm1 1 s2Þ " am1 ¼ 0:
ð7bÞ

Finally, if the mutant is net neutral among the demes
(!s ¼ 0), the approximate probability of fixation is

uGG
0 ðp1; p2Þ ¼

uGG
1 1uGG

"
2

: ð8Þ

Equations 5–8 reduce to expressions (7)–(11) of
Gavrilets and Gibson (2002) when N1 ¼ N2 and
m1 ¼ m2.
Separation of timescales: diffusion approximations

based on the mean allele frequency: The above approxi-
mations either were developed for migration extremes
or perform poorly for alleles that are net deleterious
(see two-deme results below). In this section, we seek
a new diffusion approximation for intermediate mi-
gration rates (where m is of order s or more) that
performs well for both net deleterious and net benefi-
cial alleles.
With only two habitats, it is possible to rewrite the two

variables used in the two-dimensional diffusion process
(p1 and p2), without any loss of information, in terms
of the overall mean frequency of the mutant allele,
!p ¼ p1f1 p2ð1" fÞ, and among-deme frequency differ-
ence, d ¼ p1 " p2 (see Equation 1). A key observation
underlying our new approach is that, for many con-
ditions, these two quantities are closely related, such

that d can be well approximated given !p, reducing the
dimensionality of the problem. This approximation
should work well if population size is large (so that the
metapopulation should evolve on a path close to that
expected deterministically) and if d initially changes
rapidly relative to the changes in !p (which in practice
requires that the migration rate between populations is
large relative to the magnitude of selection). This latter
assumption is the ‘‘separation of timescales’’ in the title of
this section: that the difference in allele frequency be-
tween populations will approach its quasi-equilibrium
quickly relative to the rate of change in the mean
allele frequency. Under these circumstances, a one-
dimensional diffusion based on !p may be sufficient to
predict the fixation dynamics of the two-habitat system.
[Note that our sense of separation of timescales is

different from that typical of the literature of the
coalescent in structured populations. Our approach
shares more in common with the quasi-linkage equilib-
rium approach (Barton and Turelli 1991).]
Kimura (1962) derived the one-dimensional diffu-

sion equations necessary to predict the probability of
fixation for alleles with arbitrary dominance, treating
both beneficial and deleterious alleles and accounting
for the differences between the effective size and the
census size of a population. Kimura’s results dealt exclu-
sively with single panmictic populations, but Whitlock
(2003) has shown that these equations can be extended
to address spatially structured populations as well. The
equations require that we be able to write the mean and
the variance of the change in mean allele frequency per
generation (MD !p and VD !p , respectively). It also requires
that these quantities be time homogeneous, that is, that
the mean and variance of change are functions of !p
alone. With populations that are structured over space,
this assumption is never strictly true, but Whitlock
(2003) showed by simulation that violations of the strict
assumptions of the diffusion were often not important
(namely, when the strength of selection was not much
greater than the typical immigration rate to demes) and
the one-dimensional diffusion equations would work
quite well with simple modifications.
Weseek todevelopaone-dimensionaldiffusionapprox-

imation based on !p. This requires that we express, to a
reasonable level of accuracy, the expected changes in
allele frequency within demes as a function solely of the
mean overall allele frequency:

E ½D!p j !p ' ¼ E ½fp91 1 ð1" fÞp92 j !p ' " !p: ð9Þ

Within demes, allele frequencies after selection are

p*1 ¼
p1ð11 s1 1 p1s1Þ

11 2p1s1

p*2 ¼
p2ð11 s2 1 p2s2Þ

11 2p2s2
;

ð10Þ
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where the asterisk indicates the value after selection.
Subsequent migration is expected to cause allele fre-
quencies to change to, by definition, p91 and p92:

p91 ¼ ð1" m1Þp*1 1m1p*2
p92 ¼ ð1" m2Þp*2 1m2p*1:

ð11Þ

Recall from (1) that the allele frequencies of the two
demes, at any time, can be written as functions of the
mean allele frequency !p and the between-deme differ-
ence in allele frequency, d. The difference d can be fur-
ther broken down into the deterministically expected
difference in allele frequency between the demes given
!p, which we call ddet, and the chance deviation around
the deterministic expectation, which we call ddrift. So
d ¼ ddet 1 ddrift.

We now argue that d9det and the first conditional mo-
ments of d9drift can be well approximated using functions of
!p alone under certain conditions. First, note that

p91 ¼ !p91 ð1" fÞd9det 1 ð1" fÞd9drift
p92 ¼ !p9" fd9det " fd9drift:

ð12Þ

Using expressions (10) expanded to second order in jsi j,
taking the expectations of p91 and p92 in (11) conditional
on !p, and applying the substitutions (12) will result in
terms involving E ½d9driftj!p ', E ½d92driftj!p ', and E ½d93driftj!p '. The
conditional expectation of d9drift is 0, but the expectations
of the squared and cubed terms are nonzero in finite
populations. Whitlock (2002) showed that when selec-
tion isweak relative tomigration (jsij#mi), thedeviations
around the expected allele frequency can be approxi-
mated in terms of FST. To later allow for subdivision of the
habitats into local populations, we refer to the F-statistic
describing deviations in habitat allele frequency from the
expected allele frequency as FHT. Following Whitlock
(2002), the expected values E ½d92driftj!p ', and E ½d93driftj!p ' are
approximately

E ½d92drift j !p ' ffi FHTpq

E ½d93drift j !p ' ffi
2F 2

HTpqð!q " !pÞ
11 FHT

:
ð13Þ

These terms are calculated from the conditional ex-
pectations of (pi9 1 ddrift)2 and (pi9 1 ddrift)3 andby solving
for the required terms.

Because E ½d9driftj!p ' ¼ 0, E d9½ ' ¼ d9det each generation.
As we argue below, under some conditions ddet changes
at a rate that is fast relative to the rate of change in !p.
Given this, we can find a quasi-equilibrium value for ddet,
and hence d, given a value of !p. This is the separation of
timescales in the title of this section. We find the
deterministic difference between populations by setting
the ddrift terms identically to zero and solving

d9det ¼ ddet; ð14Þ

where d9det ¼ p91 " p92 and ddet ¼ p1 " p2. Solving this
equation and expanding in a Taylor series to order jsij2,

we find an approximation for the difference in allele
frequencies between demes given !p,

d̂det ffi
ð1" mTOTÞpqðs1 " s2Þ

mTOT
; ð15Þ

wheremTOT ¼ m11m2. Simulations suggest that approx-
imation (15) for d̂det works well when the total rate of
migration is greater than the maximum strength of
selection, s ¼ maxfjs1j; js2jg, but fails when migration
rates are small relative to s. Moreover, it can be shown
using arguments parallel to those in Nagylaki (1992,
pp. 177–181) that if mTOT . s and migration is
approximately symmetric, then d will quickly converge
to d̂det. The approximation should fail when migration
rates are small relative to the maximal strength of
selection. Developing more rigorous approximations
of d̂det represents a fruitful avenue for future research.

We can now write the expected change in !p over a
generation as a function of !p, d̂det, and FHT. FHT is not
much affected by !p, and under the conditions given in
the previous paragraph we can write d̂det as a function of
constants and !p. This means that, when the strength of
selection is weak compared to migration, we can write a
recurrence equation for !p that depends only on !p, allow-
ing a one-dimensional diffusion approach to theprobabil-
ity of fixation. Expanding (9) in a series after substituting
Equations 11, 12, 13, and 15, and ignoring terms of order
mi

2, si2, misi, or higher, we find

MD !pð!pÞ ¼ E ½!p9" !pj!p '
ffi pqð½ð!q " !pÞðs1 " s2Þ2ð1" fÞf1 s1ðm2 " FHTfmTOTÞ

1 s2ðm1 " FHTð1" fÞmTOTÞ'=mTOTÞ: ð16Þ
The variance term VD !p is given by

VD !pð!pÞ ¼ E ½ð!p9" !pÞ2j!p ' ¼ pq

2Ne
; ð17Þ

where Ne is the effective size of the whole system (given
by Whitlock and Barton 1997 for most cases). This
term is approximately unaffected by heterogeneous
selection. The major effects of heterogeneous selection
appear in the mean allele frequency change term (16).

WithMD !p and VD !p thus defined, Kimura’s (1962) one-
dimensional diffusion results can then be employed
using !p in place of p to approximate the probability of
fixation. The approximate probability of fixation is

uð!pÞ ¼
Ð !p
0 GðxÞdx
Ð 1
0 GðxÞdx

; ð18Þ

where GðxÞ ¼ exp "2
Ð
MD !pðxÞ=VD !pðxÞ
# $

dx
& '

.
This derivation has required many assumptions, in

particular about the predictability of d frommean allele
frequency, the use of neutral FST, and the applicability of
the diffusion approximation. Simulations were used to
test whether these various assumptions severely compro-
mise its accuracy or precision.
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Note that at no point in the derivation was any
assumption made about the sign of the mean selection
coefficient. Equation 18 is therefore valid for both bene-
ficial and deleterious alleles.
Extensions to multiple demes: The approximations

above can be extended to multiple demes, by allowing
each of the two selective habitats to contain more than
one deme. For the separation-of-timescales approach, we
again need to specify the conditional mean and variance
of change in the average allele frequency, MD !p and VD !p ,
respectively. Theeffectivepopulation sizeof sucha system
can be found using the equations in Whitlock and
Barton (1997) formany cases, giving the necessaryNe to
calculate VD !p . The equation forMD !p is different in the
multiple-deme case than in the two-deme case. If we
consider selection within each habitat to be acting
independently (between migration events) from selec-
tion in the other habitat, then the response to selection
over all the demes within each habitat can be described
using the equations in Whitlock (2003) for homoge-
neous selection in a structured population. With soft
selection and additive gene action, as has been assumed
here, the expected change in allele frequency for each
habitat is reduced by a factor (1 " FSH), where FSH is
Wright’s fixation index calculated for demes within a
habitat. Assuming that the population structure in the
two habitats is similar, this results in the effective strength
of selection within each habitat being reduced by a factor
(1" FSH), such that the effective strength of selection in
habitat i is si;e ¼ ð1" FSHÞsi . Equation16canbeusedwith
this substitution for si. Note that, as inWhitlock (2003),
FSH is calculated weighted by local population size.

TWO-DEME RESULTS

Several different domains are defined by the assump-
tions of different approaches that determine the best
approximation for solutions to a particular case, on the
basis of simulation results (Table 1). These domains are
delimited by whether the new allele is beneficial or

deleterious on average and by how strong selection is
relative to the rate of migration. We discuss the cases of
beneficial and deleterious alleles separately.
Net beneficial alleles: When alleles are on average

beneficial (!s. 0), the relative performance of four dif-
ferent approximations (strong-migration approximation,
weak-migration approximation, separation of timescales,
and singular perturbation) varies as a function of migra-
tion rate (Figure 1). The relative power of selection and
migration can be divided roughly into three regimes: the
case where migration is stronger than selection, the case
where the allele would be stably polymorphic in an in-
finite population because local selection is stronger than
migration, and the limiting case of very weak migration.
Different techniques work better in these three different
regimes. We discuss them in turn.

TABLE 1

Theoretical parameter domains of applicability for, and actual performance of, two-deme approximations to
the probability of fixation

Method

Domain
High-migration limit

(Equation 2)
Low-migration limit
(Equations 3 and 4)

Singular perturbation
(Equations 6–8)

Separation of timescales
(Equations 16–18)

m.maxfjs1j; js2jg !s. 0a !s. 0 !s. 0
!s , 0a !s , 0b !s , 0

m ffi maxfjs1j; js2jg !s. 0 !s. 0 !s. 0 !s. 0a

!s , 0 !s , 0 !s , 0b !s , 0a

m>maxfjs1j; js2jg !s. 0a !s. 0 !s. 0b

!s , 0a !s , 0b !s , 0b

a Best, or most convenient, approximation within the parameter domain.
b Poor performance by method within the parameter domain.

Figure 1.—The probability of fixation of a net beneficial
allele as a function of migration rate in a two-deme model.
The dots present results from107 simulations. The bottomhor-
izontal dashed line is the high-migration limit (Nagylaki
1980); the top dashed line is the low-migration limit due to
Tachida and Iizuka (1991); the solid line shows the results
from the separation-of-timescale approximation; and the dot-
ted line shows the results of the singular perturbation approx-
imation, which in this case is exactly equivalent to the results of
Gavrilets and Gibson (2002). For these cases, the migration
rate was symmetric between the two demes, and the other pa-
rameters used were N1 ¼ N2 ¼ 50, s1 ¼ 0.01, and s2 ¼ "0.005.
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As Nagylaki (1980) showed, when migration is com-
mon the fate of the allele is determined by its mean
selection coefficient (!s). This seems intuitive: with large
migration rates an allele moves rapidly from habitat to
habitat, and its success would therefore be determined
by its effects averaged over these habitats. In other
words, with largemigration rates, little or no association
builds betweenhabitat type and allelic type. Threemeth-
ods should apply to this case (using the mean selection
coefficient in standard diffusion equations, the singular
perturbation approximation, and the separation-of-
timescales approach derived above), and all work
relatively well, but using the mean selection coefficient
in the standard diffusion expression (i.e., the high-
migration limit) is most straightforward.

When the strength of selection is large relative to the
migration rate, a new allele is more likely to fix than
would have been expected by its mean selection coef-
ficient. This is a result of the evolved association between
habitat type and allelic identity. Selection causes alleles
to be more common in localities where they are favored
relative to their overall frequencies (Figure 2), which
means that alleles are somewhat more likely to persist
locally than would be expected if alleles were distributed
at randomover the range of the species.With lower rates
of migration, these associations build up to sufficiently
high levels as to qualitatively affect the probability of
fixation of new alleles. This effect can be seen on the
left-hand side of Figure 1, especially where the rate
of migration is lower than the minimum magnitude
of selection for or against the allele.

For migration rates about equal to either selection
coefficient, the separation-of-timescales approachworks
better (Figure 1.) If migration rates are low enough
(such that the locus would be stably polymorphic in

an infinite population, with the conditions given in
Karlin 1982 or Gavrilets and Gibson 2002), then the
separation-of-timescales approach fails drastically. This
is expected, because the assumptions of the separation-
of-timescales approach require that the between-deme
difference in allele frequency evolves quickly to quasi-
equilibrium relative to changes in the mean allele fre-
quency, which is not the case when migration rates are
low. The singular perturbation approximation is also
less accurate than the separation-of-timescales approx-
imation when the local effective population size is not
large (Figure 3).

Finally, in the limit as the migration rate approaches
zero, the approximation of Tachidaand Iizuka (1991)
works very well. This approximation assumes that the
fate of an allele within a deme is resolved between suc-
cessive migration events, and so it works well only for
very low migration rates, perhaps on the order of those
expected between incipient species.

For all of the examples we have simulated, the rela-
tionship between probability of fixation and migration
rate is monotonic, with the probability of fixation
bounded between the low-migration and high-migration
limit values. We hypothesize that these therefore repre-
sent likely upper and lower bounds, respectively, for
intermediate migration levels.

Net deleterious alleles: When the average effect of
the new allele is deleterious (!s , 0), the allele is not
expected to fix deterministically, but detrimental alleles
sometimes fix due to the stochastic effects of genetic
drift. Again, three domains, defined by the relative
strengths of migration and selection, dictate which
approximations are most accurate in determining the
probability of fixation of the new allele (Figure 4 and
Table 1). With strongmigration (jsi j>m), the process of
fixation is well described by Kimura’s single-population
diffusion results, using the mean selection coefficient
and mean allele frequency.

Figure 2.—The difference in allele frequency between hab-
itats, as a function of the overall mean allele frequency. A pos-
itive number for this difference indicates that the deme where
the allele is favored has a higher frequency of the allele. For
this example, there are two equal, large demes with symmetric
migration rate 0.025. s1 ¼ 0.01 and s2 ¼ "0.005. The graph
traces the deterministic trajectory from an initial state when
the allele is rare in both populations to when the allele has
reached global fixation.

Figure 3.—The effects of increasing symmetric population
size on the various approximations for the two-deme model.
Themeaning of the lines is as in Figure 1, with the dashed line
indicating the high-migration limit. Migration is symmetric at
m1 ¼ m2 ¼ 0.025, with s1 ¼ 0.01 and s2 ¼ "0.005.

Probability of Fixation in a Heterogeneous Environment 1413



For migration rates of approximately the same order
as the mean strength of selection, the separation-of-
timescales approximation works fairly well. Like the case
with net beneficial alleles, the probability of fixation is
somewhat higher than would be predicted from the
mean selection coefficient alone, again because the
alleles are relatively more frequent in habitats in which
they are favored, causing these habitats to affect allele
frequency change more than the deleterious habitats.
The separation-of-timescales approach fails, however,
when the conditions are consistent with a stable internal
equilibrium of allele frequency, i.e., when in an infinite
population the allele would remain indefinitely poly-
morphic at a balance between migration and selection.
Fixation probabilities in this range of parameter space
can be approached only via numerical solutions to the
full two-dimensional diffusion approximation, or by
exact Markov chain calculations (feasible only for very
small populations), or by simulation. Each of these is
computer intensive, although the numerical solution of
the diffusion can be computed quickly even on a per-
sonal computer.
The singular perturbation approximation due to

Gavrilets and Gibson (2002) can give qualitatively
incorrect results for alleles that are on average deleteri-
ous (Figure 4). In fact, the equations in Gavrilets and
Gibson (2002) give the probability of fixation condi-
tioned on the locality of the introduction of the new
allele, and these equations yield the counterintuitive
(and counterfactual) conclusion that the allele is more
likely to fix if it is initially introduced into the habitat
where it is selected against than it would be if introduced
into the favorable habitat. This result is incorrect, as we
have observed by exact Markov chain calculations, sim-
ulation, and numerical solutions of the two-dimensional
diffusion equation (results not shown).

Finally, if the migration rate is very small, the allele is
either fixed or lost in each population between migra-
tion events. In this case, equation 6 of Tachida and
Iizuka (1991) again provides extremely accurate pre-
dictions of the probability of fixation.
Unequal habitat size: One extension made in this

article is to allow for unequal population size between
the two habitats, a case treated in the past only for the
limits of very large (Nagylaki 1980) or very small
(Tachida and Iizuka 1991) migration. As shown in
Figure 5, the separation-of-timescales approach is very
successful in dealing with asymmetric migration, and
the extension of the singular perturbation approxima-
tion is moderately successful. For the examples pre-
sented in Figure 5, a constant fraction of the individuals
in each deme stay where they were born, and the
remainder migrate to the other deme. (In other words,
the forward migration rate was held constant.) Follow-
ing this dispersal, the population sizes of each habitat
are then regulated to their carrying capacities: Nf and
N ð1" fÞ. This means that the backward migration rate
into the habitat with the lower population size is higher
than the migration rate into the larger habitat. In these
cases, the diffusion approximation based onmean allele
frequency using the separation of timescales predicts
the probability of fixation very well.

MULTIPLE-DEME RESULTS

With multiple demes, a much broader array of pos-
sible demographic structures becomes possible: local
demes can go extinct and be recolonized; some demes
can bemore productive than others; populations can be
geographically arranged in a wide variety of ways, etc.We

Figure 4.—The probability of fixation of net-deleterious
alleles as a function of migration rate. The meanings of the
lines are the same as in Figure 1. The high- and low-migration
limits (dashed lines) work well in their respective domains,
and the separation-of-timescales approximation (solid curve)
is adequate for j!sj , m, but the singular perturbation approx-
imation (dotted curve) is unsatisfactory. N1 ¼ N2 ¼ 50, s1 ¼
0.01, and s2 ¼ "0.02.

Figure 5.—The probability of fixation in the two-deme
model as a function of the relative population size of the two
demes. The lines have the same meaning as in Figure 1, with
the dashed line indicating the high-migration limit. Emigra-
tion rates are held constant for each individual at 0.025,
which has the effect of increasing the backwardmigration rate
for the smaller population relative to the larger population.
Parameter values used are: N1 1 N2 ¼ 200, s1 ¼ 0.01, and
s2 ¼ "0.005.
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used simulations to test the value of the separation-of-
timescales approximation and the singular perturbation
approximations as extended in the previous sections to
account for multiple demes and more complex meta-
population structure. Here we consider cases in which
dispersal among demes across habitat boundaries is not
different from dispersal among demes within habitats.

Figure 6 shows that with local extinction and coloni-
zation, both approaches perform fairly well for net
beneficial alleles. Moreover, in all cases, if the rate of
migration between habitats is large relative to the mag-
nitudes of the selection coefficients, using the mean
selection coefficient in the equations of Whitlock
(2003) gives accurate predictions of the probability of
fixation. For metapopulations of this size, deleterious
alleles have a negligibly small probability of fixation
unless their net selection coefficients are small, in which
case the high migration limit (using !s) is appropriate.

The contributions of different demes can be very
asymmetric. Figure 7 shows the probability of fixation as
a function of the relative emigration rates of ‘‘source’’
populations and ‘‘sink’’ populations, where the former
have high contributions to subsequent generations and
the latter have lower contributions. In these examples,
which correspond to similar examples in Whitlock
(2003) but with variable selection, each deme has a
constant size, but the source populations contribute
more individuals to the migrant pool. The FST and
effective population sizewere calculated as inWhitlock
(2003), following the eigenvalue approach of Nagylaki
(1980). As the contribution of the sinks declines, the
effective population size of the whole metapopulation

also is reduced, causing the probability of fixation to
be reduced for net beneficial alleles and increased
for deleterious alleles compared to a metapopulation
without source-sink structure. Again, the separation-of-
timescales approach is very successful in predicting the
probability of fixation in this case (Figure 7).

DISCUSSION

Environmental heterogeneity can substantially affect
the probability of fixation of new alleles. If environ-
ments are differentially productive, then the effective
population size will be reduced relative to the census
population size and the probabilities of fixation of new
alleles are reduced for beneficial alleles and enhanced
for deleterious alleles (Whitlock 2003). This is true
whether selection on these alleles is heterogeneous
across space or not. In addition, as we have shown by
induction from simulations in this article, if the selec-
tion coefficient of a new allele varies across space, then
its probability of fixation is equal to or larger than would
be expected on the basis of the allele’s mean selective
effect over the range of values we considered in our
simulations. This result holds regardless of the strength
of migration or selection, although the magnitude of
this ‘‘fixation boost’’ depends on the circumstances. We
have confirmed this result only for cases with symmetric
migration. The enhancement is small whenmigration is
high and quite substantial in the limit of low migration.

Our findings, which emerge from an assortment of
analytical and numerical methods, show that accurately
predicting the probability of fixation of new mutations
in heterogeneous environments is complicated; no sin-
gle approximation works best under all circumstances

Figure 6.—The probability of fixation with the extinction/
colonization model and multiple demes, as a function of the
proportion of demes that occur in habitat 1. Lines follow the
same meanings as in previous figures. Here there were 100
demes of 100 individuals each, with migration into each deme
equal to 0.025. Other parameters are: s1 ¼ 0.02, s2 ¼ "0.01;
number of individuals colonizing new demes, four; extinc-
tion rate 0.05 per generation; and the probability of common
origin of the colonists, 0 (seeWhitlock andMcCauley 1990).
The singular perturbation approximation (dotted line) and the
separation-of-timescales (solid line) approximation work rea-
sonably well, while the high-migration approximation (dashed
line) quantitatively fails for these parameters.

Figure 7.—Probability of fixation with a source-sink popu-
lation in a heterogeneous environment uncorrelated with
demography. The model and parameters here are the same
as in Figure 3 of Whitlock (2003) except that selection in
one habitat was s1 ¼ 0.01 and in the other equally common
habitat was s2 ¼ "0.005. There were 100 demes each with
100 individuals, and the immigration rate into the sources
was 0.2, while for the sinks the immigration rate was 0.25. Sink
populations contributed to the migrant pool in proportion to
the value on the x-axis.
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(Table 1). It is useful perhaps to attempt to give a
heuristic division of possible cases with an idea of which
mathematical approach performs best. In the limit of
lowmigration rates (when each deme becomes fixed for
a single allele in the time betweenmigration events), the
approach developed by Tachida and Iizuka (1991)
works very well for all parameter values we have tested.
At the other extreme, in the limit of high migration
rates, such that the migration rate is much higher than
the maximum magnitude of selection across habitats,
the system behaves approximately as though the alleles
experienced the average selection coefficient every-
where, as suggested by Nagylaki (1980). These low- and
high-migration limits seem to set the upper and lower
bounds, respectively, for the probability of fixation.
For intermediate migration rates, neither of these

limits is particularly accurate (nor, of course, were they
claimed to be). Other approximations do better. In
particular, the singular perturbation approximation of
the two-dimensional PDEs developed by Gavrilets and
Gibson (2002) and extended here works fairly well for
alleles that on average are beneficial, but it can fail badly
for alleles with a net deleterious effect. By comparison,
the separation-of-timescales argument developed in this
article works well for either beneficial or deleterious
alleles, provided that the strength of selection is not
strong relative to the migration rates. However, this
approximation also fails badly for weak migration
(approximately corresponding to cases with stable de-
terministic internal polymorphisms). This leaves a case
for which there is no acceptable analytic approximation:
when the new mutation is on average deleterious (!s ,
0) and migration is somewhat weaker than selection
(maxmi,minjsij). The probability of fixation, however,
seems to be bounded above by the low-migration limit
and bounded below by the high-migration limit.
It is not clear to what extent adaptation is limited by

the probability of fixation of newmutations, because we
do not know enough about mutation rates or the
distribution of new mutational effects. If mutation rates
are limiting the rate of evolution, then the deviations in
probability of fixation caused by environmental hetero-
geneity could have some effect on the rate of adapta-
tion. For sufficiently strong migration, the rate of
change in mean fitness across a heterogeneous envi-
ronment should be determined by the mean selective
effect of new alleles across all habitats (i.e., by !s). For
weaker migration, though, alleles are more likely to fix
than predicted by their mean selective effect. One
interesting ramification of this is that alternate alleles
at the same locus can all have elevated probabilities of
fixation depending on which one is already fixed in the
population. While this does not in itself bias the mean
fitness at equilibrium, it would cause alleles to replace
each other faster than expected by uniform selection
theory. For metapopulations of any size, however, the
rate of these substitutions will be very slow, because the

time required for the fixation of alleles maintained by
balancing spatial selection can be very long.
In this article we have made several assumptions that

limit the generality of our conclusions. Throughout we
have assumed that the selective effects of these alleles do
not influence the demographic properties of the demes
in which they occur (i.e., soft selection). Clearly, in some
cases, adaptation to a local environment will affect the
productivity of the population in that habitat, and the
dynamics of fixation will be changed. Moreover, we have
assumed that the demographic properties of each deme
are independent of its habitat type, particularly in the
multiple-deme extensions in the latter part of this
article. Clearly the metapopulation properties of demes
can—and probably do—covary with habitat type (e.g.,
extinction rates may be lower in higher-quality habi-
tats). In the simulations, we have focused on cases with
symmetric migration, and we have not yet explored the
case of weak, asymmetric migration. It is not yet clear
whether the increase in probability of fixation would
appear in these cases, although we suspect that it would.
Finally, and perhaps most importantly, we have exam-
ined the effects of only one locus segregating in the
population. This is clearly unrealistic in cases of multi-
ple habitats connected by limitedmigration, whenmany
selectively important alleles are likely to be segregating
in the metapopulation at the same time. Linkage
disequilibria between multiple loci all involved in local
adaptation can result in correlated selection on each
allele in the linkage group. As a result, the effective
selection against ‘‘foreign’’ alleles in a habitat may be
increased, in some cases very substantially. The effect of
these limitations on our overall conclusion—that spa-
tially variable selection enhances the fixation of new
mutations—is an important open question.
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