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Abstract

Over the last 10 years, high-density SNP arrays and DNA re-sequencing have illuminated the majority of the
genotypic space for a number of organisms, including humans, maize, rice and Arabidopsis. For any researcher
willing to define and score a phenotype across many individuals, Genome Wide Association Studies (GWAS) present
a powerful tool to reconnect this trait back to its underlying genetics. In this review we discuss the biological and
statistical considerations that underpin a successful analysis or otherwise. The relevance of biological factors
including effect size, sample size, genetic heterogeneity, genomic confounding, linkage disequilibrium and spurious
association, and statistical tools to account for these are presented. GWAS can offer a valuable first insight into trait
architecture or candidate loci for subsequent validation.
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The causal relationship between genetic polymorphism
within a species and the phenotypic differences observed
between individuals is of fundamental biological interest.
The ability to predict genetic risk factors for human dis-
ease and agronomically important traits like growth rate
and yield in plants require an understanding of both the
specific loci that underlie a phenotype, and the genetic
architecture of a trait. This relationship between pheno-
type and genotype has been of major interest at least
since Mendel postulated the existence of ‘internal fac-
tors’ that are passed on to the next generation.
Forward genetics, in which many individuals that differ

in genotype are screened for phenotypes of interest, has
been a hugely powerful tool to address such questions.
In general, the raw genetic differences being screened
are obtained either by mutagenesis or sampled from a
natural population. Any phenotypic differences identified
are connected back to the underlying causative loci via
various mapping approaches including Quantitative
Trait Locus (QTL) mapping. In this perspective we con-
sider a complementary and powerful tool for connecting
the genotype-phenotype map, Genome-Wide Associ-
ation Studies (GWAS).
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QTL mapping has proved, and remains, a powerful
method to identify regions of the genome that co-
segregate with a given trait either in F2 populations or
Recombinant Inbred Line (RIL) families. The key com-
ponents of the flowering time pathway in Arabidopsis
have been dissected in this way [1-3]; for a review of nat-
ural variation and QTL mapping in Arabidopsis see [4].
Despite this success, QTL mapping suffers from two
fundamental limitations; only allelic diversity that segre-
gates between the parents of the particular F2 cross or
within the RIL population can be assayed [5], and sec-
ond, the amount of recombination that occurs during
the creation of the RIL population places a limit on the
mapping resolution. Resolution can be dramatically im-
proved with several generations of intercrossing when
establishing the RIL population, e.g. advanced intercross
RILs [6]. Meanwhile, allelic diversity within a mapping
population can be increased (up to a point) by intercrossing
multiple genetically diverse accessions before establishing
the RILs, e.g. the Multi-parent Advanced Generation
Inter-Cross (MAGIC) and Arabidopsis multi-parent
RIL (AMPRIL) [7,8].
Nevertheless, the allele frequencies and combinations

present in any such lab population will differ from those
in the natural population [9]. For many applications this
does not present a problem, but it does confound the
analysis of epistasis for example, and offers only a
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limited view of the functional diversity present within
the natural population.
GWAS overcome the two main limitations of QTL

analysis mentioned above, but introduce several other
drawbacks as a trade-off (discussed below). Generally,
after identifying a phenotype of interest, GWAS can
serve as a foundation experiment by providing insights
into the genetic architecture of the trait, allowing
informed choice of parents for QTL analysis, and
suggesting candidates for mutagenesis and transgenics.
Thus, GWAS are often complementary to QTL mapping
and, when conducted together, they mitigate each other’s
limitations [10,11].
The basic approach in GWAS is to evaluate the associ-

ation between each genotyped marker and a phenotype
of interest that has been scored across a large number of
individuals. This approach was pioneered nearly ten
years ago in human genetics [12], with nearly 1,500 pub-
lished human GWAS to date [13]. GWAS are now rou-
tinely applied in a range of model organisms including
Arabidopsis [14] and mouse [15], and to non-model sys-
tems including crops [16-18] and cattle [19].
In this review we will discuss the advantages and limi-

tations of running a GWAS in Arabidopsis, issues that
are generally relevant to other organisms. We consider
sample size and mapping panel composition, statistical
approaches to overcome genetic confounding and
methods to identify and account for complex genetic
architectures.

Self-fertilisation makes Arabidopsis particularly
well suited to GWAS
Arabidopsis thaliana has proved an almost ideal organ-
ism in which to conduct GWAS because it can be
maintained as inbred lines via continued self-fertilization
, thus it is possible to repeatedly phenotype genetically
identical individuals. Because more than 1,300 distinct
accessions have been genotyped for 250,000 SNPs [20]
all a researcher requires is the phenotype of several hun-
dred lines for a trait of interest. In addition to the land-
mark proof-of-concept GWAS study of 107 phenotypes
[14], numerous other traits including glucosinolate levels
[21], shade avoidance [22], heavy metal [23] and salt tol-
erance [24], flowering time [25], and other life history
traits [26] have been successfully analyzed.
Importantly, major improvements in the statistical

methodology have occurred recently, including the use of
mixed models that take into account the confounding ef-
fect of genetic background. This has been implemented
via various R and Python packages, or as a first point of
call, one can make use of the online tool: http://gwas.gmi.
oeaw.ac.at [27]. This web application comes preloaded
with the genotype data for all commonly used accessions,
provides several statistical options, and facilitates a meta-
analysis across published traits. Whereas several years ago,
a complete genome-wide scan of a few hundred individ-
uals could easily take a day, a simple single marker scan
(termed a marginal test, ignoring epistasis and other inter-
actions) of a few hundred thousand SNPs runs on a PC or
the web-based application in a few minutes.

Genetic architecture; rare variants of large effect,
or common variants of small effect?
The motivation to conduct GWAS can be either to identify
causative/predictive factors for a given trait, or to determine
aspects of the genetic architecture of the trait (i.e. the num-
ber of loci that contribute and their respective contribution
to the phenotype). Some traits are underpinned by a small
number of loci with large effect sizes (a simple genetic
architecture) and are highly amenable to GWAS. This sce-
nario might be common for traits under biotic selection
[28]. Other traits may possess more complex architectures
that present difficulties for GWAS. Two possibilities are ei-
ther that a trait is controlled by many rare variants, each
having a large effect on the phenotype, or in contrast, many
common variants of only a small phenotypic effect. In both
cases the causative variants may be clustered in one or a
small number of genes, or across many genes (polygenetic).
The power of GWAS to identify a true association be-

tween a SNP and trait is dependent on the phenotypic
variance within the population explained by the SNP
(Figure 1a). The phenotypic variance is determined by
how strongly the two allelic variants differ in their
phenotypic effect (the effect size), and their frequency in
the sample. Because of this both rare variants and small
effect size present problems for GWAS [29,30].
Additionally, rare variants suffer from being in strong

or complete association with many other non-causative
rare variants within the genome, regardless of the LD
decay, and thus a single causative locus may drag with it
many synthetic associations [31]. This point is illustrated
clearly if one considers multiple private SNPs within an
individual: they are completely linked regardless of their
genomic locations.
How does one increase the power to detect meaningful

association when variants are either at low frequency or
have a small effect size? Several important considerations
including sample size, incomplete genotyping, genetic het-
erogeneity and accounting for confounding genetic back-
ground are discussed below. We note however, that the
importance of rare variants for a particular trait may also
be disentangled using QTL analysis as rare variants are el-
evated to intermediate frequency by the crossing scheme.

Sample size and genetic heterogeneity: how to
choose your mapping panel?
To date, most analyses performed with Arabidopsis have
used only a few hundred individuals, but for some traits,
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Figure 1 Sample size and effect size. a) Power and FDR for an idealized phenotype. Simulations in which a single random SNP explaining 5%,
10% or 20% of the phenotypic variance (with heritability ~0.75) were performed in either 200, 400 or 800 individuals [67]. Simulations are based
on the available SNP data for Arabidopsis [20], with structure added by giving 10,000 random SNPs a tiny effects size. The star indicates power
(the ability to find true positives) and FDR (false positives) at the 5% bonferroni-corrected threshold for 220,000 markers. b) An example of one
particular simulation in which the causative SNP (red diamond) is not the most significant SNP in the local window. Remaining SNPs are colored
according to their linkage to the causative SNP. Dashed line denotes the 5% bonferroni-corrected threshold for 220,000 markers.
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meaningful results can be obtained with less than 100
accessions [14]. This suggests that the traits considered
were underpinned by only a few loci that explain a large
portion of the phenotypic variance. The situation looks
different in humans, where typically a large number of
small effect loci are found and most analyses require
several thousand individuals to detect these [32,33].
Genetic architectures with many small effects are ob-
served in other animals [34] or maize [35]. It remains to
be seen whether there is a general trend for different
genetic architectures between outcrossing and selfing
species. On the other hand, human disease states may in
fact be a special class of traits driven by numerous small
effect deleterious mutations, whereas, loci with inter-
mediate effect size have been shown to underlie traits
such as human eye and skin-colour [36,37].
Despite the success of GWAS in Arabidopsis, many

traits will be polygenic with small effect size; hence, in-
creasing the sample size will improve the power to re-
cover meaningful associations (Figure 1a). Given this,
how does one select a mapping panel? One approach is
to use a star-like design by including geographically dis-
tant accessions. This will maximize the genetic variance
within the sample [25], but has the potential to intro-
duce genetic heterogeneity. For reasons including local
adaptation, different variants may underlie a trait in
samples collected from different locations [26]. This
genetic heterogeneity will reduce the power to recover
either variant, because it weakens the correlation be-
tween the phenotype and any specific variant (Figure 2).
Interestingly, genetic heterogeneity can lead to a non-

causative marker being a better descriptor of the pheno-
type than a causative one [38]. Consider the case of two
recent, rare mutations that both influence the same
phenotype: any marker linked with both alleles will,
despite being non-causative, show stronger association
with the phenotype than each of the two single markers
alone (Figure 2). Such synthetic associations, while false
positives in the sense that they do not cause the pheno-
type, still prove valuable, as they are all one needs to
predict the phenotype.
It becomes possible to disentangle the contribution of

genetic heterogeneity by including ‘competing’ variants
as cofactors within a mixed model setting [39]. If in fact,
the most significant SNP is the sole causative marker, in-
cluding it as a cofactor should account for all the pheno-
typic variance contributed from that genomic region. By
fitting multiple SNPs into the mixed model, one can
potentially disentangle the minimal number of SNPs
underlying a distinct GWAS peak. Identifying the set of
SNPs for inclusion in such a model is however, non-
trivial, and can lead to over-fitting.
A second approach to increase sample size is to

densely sample a local population that shows phenotypic
diversity. This has the potential advantage of minimizing
genetic heterogeneity, but the draw back that variants
relevant to global phenotypic diversity may remain at
low allele frequency or absent completely.
However, increasing the sample size may not always

resolve a rare-variant architecture. One proposed solu-
tion is to collapse several SNPs in a region into a single
indicator variable and use this as a composite genotype
[40]. One could imagine this as a way of simplifying a
highly complex pattern of variation into only two haplo-
types. Unfortunately, the rational of how to collapse
SNPs is non-trivial [41-43].

An imperfect genotype
It is noteworthy that causal variant(s) for most phenotypes
are unlikely to be present in currently available array-based
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Figure 2 Synthetic association due to genetic heterogeneity. a) A theoretical phylogenetic tree of three individuals upon which three
mutations occur. The two most recent mutations (stars) cause a change in phenotype (red fruit). b) The older blue mutation has no affect on fruit
colour, but is in perfect correlation with the trait. Neither causative mutation are very good predictors of the phenotype.
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SNP datasets. The 250 K SNPs in Arabidopsis represent
only a few percent of the SNPs that are segregating within
the population. Recent whole-genome sequencing has re-
vealed a much higher SNPs density in Arabidopsis [44-46],
with approximately 7 Million SNPs within a worldwide
sample. Despite this, significant associations are detectable
because causative variants (be they SNPs or structural vari-
ants) are often in sufficient linkage disequilibrium (LD)
with genotyped markers. In Arabidopsis, LD generally
decays 50% within 5 Kb [45]; hence, the 250 K SNPs
(on average one SNP every 600 bp) tag almost all of the
non-repetitive genome, and thus enable GWAS [14,47].
In the near future the ‘full’ genome sequence of more than

1,000 accessions will become available (www.1001genomes.
org). This set of ‘all’ SNPs, structural variant, copy number
and transposable element variation will presumably include
most causative variants. It is noteworthy, that in principle
any of these genotypes can be used for GWAS.
Will the inclusion of such full sequence actually prove

helpful? No matter how many variants are included, the
LD structure of the data and the unusual occurrence of
long-range LD observed between SNPs within (and
sometimes between) Arabidopsis chromosomes [46] will
always make the disentanglement of causative variants
from linked neutral markers difficult. However, any
drawbacks caused by this LD structure will be strongly
outweighed by the benefits gained by knowing about all
variants during subsequent hypothesis testing and follow
up studies.
Missing or low quality data is a major issue for both
SNP chips and re-sequencing datasets. Excluding poorly
genotyped variants from only a subset of individuals in-
troduces an unequal sample size across sites, making the
downstream statistics more complex. Commonly, this is
overcome via the imputation of missing data [48], in
which the state of an un-genotyped marker is inferred
from the haplotypes of the other individuals. This ap-
proach may be valid when data is missing due to technical
reasons (low coverage sequencing or poor hybridization to
genotyping arrays); however, it is likely to miss-infer the
correct state if more than two alleles are present at a site,
which will occur whenever SVs and CNVs overlap a SNP.
Alternatively, one may allow uncertainty in the genotype
[49] by calculating a probability score for each SNP, which
is then used to weight the regression.

Confounding due to relatedness
Two major issues discussed above: that related individ-
uals share both causal and non-causal alleles, and that
LD between these sites can lead to synthetic associa-
tions, are actually a single problem, that of confounding
due to genetic background [50]. A powerful method to
account for this artifact was first developed in the field
of animal breeding: mixed models that handle popula-
tion structure by accounting for the amount of pheno-
typic covariance that is due to genetic relatedness (i.e.
including relationship or kinship as a random term
within the model). Since then, mixed models have been

http://www.1001genomes.org
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applied to GWAS [11,51-53], and can markedly reduce
the number of false positive associations (Figure 3).
Unfortunately, any relationship matrix used to correct

for population structure can only serve as a proxy for
the real underlying genetic background [50]. Intuitively,
one only wished to correct for confounding markers that
are associated with the trait of interest. One approach is
to only include SNPs in the relationship matrix that
show the strongest linear correlation with the trait [54].
Judging the outcome
On what criteria can one judge the most appropriate
GWAS method for a particular trait? The most basic
and often informative approach is a correction for mul-
tiple testing (usually a 5% Bonferroni threshold is used)
and inspection of Q-Q plots and Manhattan plots for
evidence of P value inflation (Figures 3 and 4). Both ap-
proaches give a general impression of the data, i.e. are
there too many, or too few significant SNPs relative to
ones prior expectation? The main limitation of these
corrections is the assumption that every SNP tested is
independent. Structure in the Arabidopsis population
clearly violates this assumption and thus many spurious
a 

b 

false negative 

Figure 3 Taking genetic background into account improves the perfo
each data point represents a genotyped SNP, ordered across the five chrom
were randomly chosen to be ‘causative’ and account for up to 10% of the
mixed model that accounts for population structure and other background
p-values and the five causative markers are not the strongest associations.
one false positive. A dashed horizontal line denotes the 5% Bonferroni thre
associations survive a multiple testing correction due to
LD in the data.
The most informative criterion of performance is the

proportion of false positive and false negative associa-
tions in a simulated dataset (that maintains the LD char-
acteristics of the real population), typically expressed as
false discovery rate (FDR) and power (Figure 1). Given
the aims of the study, one may consider a high FDR for
some projects (e.g. investigating the genetic architecture
of a trait) and a low FDR for others (e.g. identifying can-
didate loci for follow-up studies).

Adding it all up: heritability
Narrow sense heritability is a measure of the contribu-
tion of additive genetic variants to the observed pheno-
typic variance; this can be thought of as how strongly
the phenotype is connected to the genotype. The mixed
model, used to run GWAS, partitions the observed
phenotypic variance into additive genetic and non-
genetic components. These estimates can (under the as-
sumption of the infinitesimal model) be used to calculate
heritability, usually referred to as pseudo-heritability.
For some traits (flowering time in Arabidopsis for

example) the pseudo-heritability may actually exceed
false positive 

rmance of GWAS. Manhattan plots for a simulated trait, in which
osomes of Arabidopsis. Five SNPs (indicated by vertical dashed lines)
phenotypic variance each. GWAS using a) a linear model, and b) a
genomic factors. The simple linear model leads to heavily inflated

The mixed model is superior, but still leads to one false negative and
shold.



Figure 4 The mixed model dramatically reduces inflation of
p-values. Quantile-Quantile plot showing strong p-values inflation
for a marginal GWAS that does not consider population structure
(red line). Accounting for population structure with the mixed
model dramatically reduces inflation (blue line). The grey line
indicates the expected p-value distribution under the null hypothesis
of no causative markers in the data. Note, that after correction for
population structure, only the most significant markers deviate from
the null expectation.
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heritability estimated from replicates (A. Korte personal
observation). However, for many traits (especially in
humans) the pseudo-heritability is much lower. This could
be thought of as a special case of missing heritability.
Missing heritability normally refers to the portion of gen-
etic variance that cannot be explained by all significant
SNPs [32]. This discrepancy might partly result from in-
complete linkage between causative variants and those ge-
notyped, or due to rare variants [31] (however, see [55]).
The problem then is a fundamental limitation of GWAS
to identify variants of small effect, or viewed another way,
a limitation of running GWAS in a small and heteroge-
neous sample. Inclusion of full sequence data and in-
creased sample size could in theory overcome this issue.
Furthermore, it has been suggested that the epigenetic

state might also contribute to heritability in Arabidopsis
[56,57]. Given that a variable epigenetic state might
modulate the connection between SNP and trait it
would be appropriate to consider this intermediate bio-
logical information. This might be implemented with the
integration of genetic, epigenetic, gene expression and
phenotype information into a joint model. Estimating
the parameters of such a model would require a substan-
tial sample size.

Accounting for interactions within the genome
and the environment
Marginal GWAS do not consider the genetic inter-
action between loci (epistasis), or the interaction
between loci and the environment. Epistatic interac-
tions between genes poses a problem to association
mapping, yet are likely to make a major contribution to
the Arabidopsis phenotype [58].
Although strategies for identifying epistatic interaction

in GWAS have been proposed [59-61], complete
genome-wide interaction scans suffer (if not computa-
tionally, at least statistically) from the massive number
of tests that need to be performed. The computational
problems could be overcome using graphics processing
units (GPUs) [62].
Identifying meaningful associations from the trillions

of pair-wise tests is a serious challenge. Various ap-
proaches to reduce the number of tests consider only
loci previously shown to be important in the marginal
GWAS or make use of dimension reduction [63,64].
Incorporating the Arabidopsis Interactome data [65] is
another possibility. As an example, by taking known net-
work topologies into account and testing specific models
on a case-by-case basis, a recent study used the well-
characterized glucosinolate pathway and combined it
with GWAS to identify new loci that are sensitive to en-
vironmental fluctuations [21].
The contribution of a gene to a trait may vary depend-

ing on the environmental conditions, and methods to
identify such gene-by-environment (GxE) interactions
have been suggested [66]. In this setting, the ability to
repetitively phenotype the same genotype (due to selfing)
allows one to test associations in several different envi-
ronments (e.g. flowering time at two temperatures or
fitness at different locations). Statistical models that
analyze correlated traits (one can consider a trait mea-
sured in two environments as two correlated traits),
while still correcting for population structure, have been
proposed [67]. This allows detection of previously un-
detected associations and the decomposition of effects
into genetic and environmental components, shedding
light on trait architecture [67,68]. Interestingly, this
method is more powerful at detecting GxE crossover ef-
fects, in which the effect of an allele is opposite in the
different environments, and less powerful at identifying
scaling effects, in which only the magnitude of the effect
changes [67,69].
Phenotyping the same Arabidopsis line multiple times

under controlled environmental conditions increases
precision of the trait mean, but also allows one to esti-
mate the phenotypic variance. Simulations suggest that
selection affects variance-controlling loci even more
strongly [70]. For this approach to work the extent to
which a phenotype is buffered must vary between indi-
viduals, a likely situation. To date, most GWAS have
considered only the trait mean, aiming to understand
the genetic contribution to a particular phenotype per se.
However, by considering the phenotypic variance it
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becomes possible to uncover the genetic basis of robust-
ness and plasticity.
It is interesting to consider that the most dramatic en-

vironmental change an allele might experience is a shift
into a different genetic background. While technically
any difference that results is the outcome of epistasis
(gene-by-gene interactions) one can essentially model
this as a GxE effect.

Looking forward
GWAS methodology has advanced such that it is now a
powerful tool for the analysis of simple traits under
additive genetic scenarios, and for the dissection of more
complex genetic architectures. Many phenotypes of
interest in humans and plants are highly quantitative,
and as such GWAS may fail to uncover the causative
loci we seek. One possible solution is to refine the
phenotype of interest by scoring a trait more proximal
to the underlying genetics [71]. This has the potential to
reduce the number of loci that contribute to the trait
and thus increase the power to detect them.
It is an important consideration (or limitation) that even

under the simple simulation scenario of a single causa-
tive locus with high heritability presented in Figure 1b,
the most significant SNP is not always the true causa-
tive locus. Such a synthetic association is a natural
consequence of the linkage and error structure of the
data, and thus may persist despite an increase in the
sample size.
The literature now contains numerous examples of

GWAS that uncover the underlying genetics. Still, miss-
ing genotypes, genetic heterogeneity, unexpected LD,
small effects size, low allele frequency or complex gen-
etic architectures remain a challenge. The collection of
GWAS methods to account for such factors will con-
tinue to grow. However, the best predictors of success
will remain a well-defined trait, an appropriate statistical
model and finally, the validation of candidates.

Glossary
Effect size The average phenotypic difference of two alleles
at a locus.
Genetic architecture The network of genetic variants that
underlie a given trait, including the number, effect size,
and allele frequency of causative alleles, and all additive
and epistatic interactions between them.
Genetic background All loci that do not contribute to a
given trait in a particular environment. Factors including
population structure can cause partial correlation between
the genetic background and a trait.
Genetic heterogeneity When different loci, either within
a single gene (allelic heterogeneity) or in different genes
(genic/locus heterogeneity), produce the same phenotypic
effect in separate individuals.
Gene-by-Environment (GxE) interaction When the pheno-
typic effect of a locus is different in distinct environments
(see [72]).
Gene-by-Gene (GxG) interaction or Epistasis The non-
additive interaction of two or more loci (see [73]). Allelic
combinations between sites may result in a higher (positive
epistasis) or lower (negative epistasis) phenotype than
expected from the effect size at each locus alone.
Heritability The proportion of phenotypic variance attrib-
uted to variance in genotype (broad sense heritability) in a
particular environment (see [74]). The contribution from
additive genetic variants (i.e. excluding dominance and
epistasis) is the narrow sense heritability (or breeding
value) which can be estimated from the regression of
offspring phenotypic values on parental phenotypes.
Linkage disequilibrium (LD) The non-random co-occur-
rence of two or more alleles. LD naturally occurs between
loci in close proximity, and is broken down by recombin-
ation. Higher than expected LD can be maintained, even
across different chromosomes, by selection or population
structure.
Mixed models A statistical model that contains both
fixed and random effects, used to estimate correlations
between phenotypes and genotypes, while taking into
account the relatedness between individuals.
Phenotypic variance A measure of the spread of trait
values within a population. Phenotypic variance results
from genetic (see heritability) and environmental factors.
The proportion of phenotypic variance explained by a sin-
gle locus is a product of its effect size and allele frequency.
Pseudo-heritability An estimate of narrow sense herit-
ability from the mixed model. This is the fraction of
phenotypic variance that can be explained by the genetic
relatedness between individuals (as estimated by a gen-
ome-wide kinship matrix from SNP data).
Synthetic association The association of a non-causative
marker with a given trait, driven by linkage to one or more
causative markers and/or an unmeasured source of error.
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