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QUANTITATIVE GENETICS AND THE EVOLUTION OF
REACTION NORMS
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Abstract. — We extend methods of guantitative genetics to studies of the evolution of reaction norms
defined over continuous enviconments. Our models consider both. spatial variation ¢hard and soft
selection) and temporal variation (within a generation and between generations). These different
forms of enviranmental variation can produce different evolutionary trajectories even when they
favor the same optimal reaction norm. When genetic constraints limit the types of evolutionary
changes available to a reaction norm, different forms aof environmental vanation can also praduce
different evolutionary equilibria. The methods and models presented here provide a framework
in which empiricists may determine whether a reaction norm is optimal and, if it is not, to evaluate

hypotheses for why it is not.
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A reaction norm describes the pheno-
types that a genotype can produce across a
range of environments (Woltereck, 1909;
Johannsen, 1909, 1911). Ever since
Schmalhausen (1949) introduced the con-
cept of reaction norms to modern studies
of evolution, hiologists have viewed the set
of phenotypic responses by a trait to envi-
ronmental variation as a metacharacter that
can be molded by selection. Two views have
developed that place different emphases on
the factors dominating the evolution of re-
action norms. The first highlights the im-
portance of fitness optimization in the evo-
lution of reaction norms (Gause, 1947,
Schmalhausen, 1949; Lerner, 1954, Wad-
dington, 1957; Bradshaw, 1965). The sec-
ond underscores the significance of
evelutionary constraints in preventing or-
ganisms from responding optimally in every
environment {MacArthur, 1961; Levins,
1968; Huey and Hertz, 1984). Using a quan-
titative genetic perspective, this paper ex-
amines how selection and constraints can
Interact to determine the outcome of reac-
tion norm evolution. This framework also
provides methods for determining empiri-
cally whether observed reaction norms are
selectively optimal or evolutionarily con-
strained.
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Previous workers who have stressed the
role of optimization recognized that selec-
tion favors different reaction norms under
different conditions. If selection favors or-
ganisms that adjust their phenotypes in re-
sponse to the environments they inhabit,
then phenotypic plasticity is favored (Gause,
1947, Bradshaw, 1965). Bradshaw (1963),
for example, suggests that plasticity in the
timing of germination may be advantageous
because of the success realized by seeds that
develop under favorable conditions. Alter-
natively, organisms that maintain constant
developmental pathways under variable
conditions may be selectively favored. In
this case, homeostatic reaction norms are
advantageous (Schmalhausen, 1949; Ler-
ner, 1954; Waddington, 1957).

Those who emphasize the importance of
evolutionary constraints agree that selection
favors any organism that can produce an
aptimal phenotype in every environment it
encounters. At the same time, they observe
that organisms often fail to respond opti-
mally in every environment. For instance,
Huey and Hertz (1984) showed that lizards
are unable to maximize sprint speed over
all temperatures even though it would be
advantageous for them to do so. Suboptimal
performance, it is argued, results from the
presence of evolutionary constraints.

These constraints are realized through fit-
ness trade-offs within the norm of reaction.
Increased adaptation to one set of environ-
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EVOLUTION OF REACTION NORMS

ments can only be achieved at the cost of
decreased adaptation to other environ-
ments. Consequently, “‘a jack-of-all-trades
is the master of none™” (MacArthur, 1961)
because adapting to a broad range of envi-
ronments will often cause a loss of fitness
in any single environment. This view leads
to a hydraulic metaphor: as selection molds
a reaction norm, the trade-offs cause the
area under it to act like an incompressible
fluid (Fig. 1, upper panel). A conservation
principle of this sort is used in several mod-
els for the evolution of reaction norms (Le-
vins, 1968; Huey and Slatkin, 1976; Lynch
and Gabriel, 1987).

While it is commonly assumed that fit-
ness trade-offs within reaction norms guide
their evolution, the evidence for such trade-
offs is inconsistent (Huey and Hertz, 1984,
Huey and Kingsolver, 198%). The results
from two experiments selecting for toler-
ance to high temperatures illustrate this with
an interesting contrast. Dallinger (1887) se-
lected on flagellates over seven years and
was able to increase their tolerance from
18°C to 70°C. Trade-offs were demonstrated
by his finding that the selected population
was no longer able to survive at the initial
temperature (analogous to the upper panel
in our Fig. 1). Bennett et al. {1990), using
E. cali, also selected for tolerance to high
temperatures. After 200 generations, the
growth rate at high temperature (42°C) was
increased by 7%. Unlike Dallinger, how-
ever, they found no evidence for trade-offs:
the lines selected to high temperatures also
grew faster at the original temperature (37°C)
than did unselected controls. There is thus
no evidence for the existence of trade-offs
within the norm of reaction in this study
(analogous to the lower panel in our Fig. 1).

If adaptation to one environment does
not necessarily sacrifice adaptation to an-
other, what prevents populations from en-
hancing their performance across all envi-
ronments? One possibility is that there are
fitness trade-offs involving characters other
than performance across the environmental
gradient under study (Huey and Hertz,
1984). In Phiox drummondii, for example,
a phenotypic response that increases total
welght will, at the same time, decrease the
efficiency of flower production (Schlichting,
1986 p. 675). A central question for those
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Trade-offs .

FITNESS

ENVIRONMENT

Fig. 1. Comparison of the effects of fitness trade-
offs versus no trade-offs. Solid curves indicate initial
fitness curves, With trade-offs (upper panel), fitness
increases realized over some environments {solid ar-
row) result in decreases over others (broken arrow).
With no trade-offs {lower panel}, fitness increases over
some environments (solid arrow) do not require 1038
of fitness in others (broken arraw).

who advocate the importance of trade-offs
is: How commonly is evolution constrained
by fitness trade-offs within the reaction
norm?

To resolve the influences of optimality
and constraint in molding reaction norms,
methods are needed to determine whether
observed reaction norms are optimal. If they
are not, we would like to determine whether
the constraints may be attributed to trade-
offs that occur within reaction norms or to
other factors.

Twa approaches have been used in pre-
vious theoretical studies of the evolution of
reaction norms. The first treats environ-
mental variation as a continuous variable
(such as temperature) and uses optimization
to predict the reaction norm favored by se-
lection. Huey and Slatkin (1976) follow this
approach in a study of the evolution of liz-
ard thermoregulation. They focus on the
costs and benefits of thermoregulation when
environments vary temporally within gen-
erations. Lynch and Gabriel (1987) likewise
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use optimization in analyzing a model of
the evolution of environmental tolerance in
temporally and spatially variable environ-
ments. Both of these studies assume a priori
specific evolutionary trade-offs by postulat-
ing that the area under the reaction norm is
evolutionanly fixed (see Fig. 1). Stearns and
Koella (1986) also use optimization in their
study of reaction norms for size and age at
maturity. They also assume constraints a
priori, in this case a specific trade-off be-
tween the two traits. Like all optimality
models, these studies are based on func-
tional constraints that are not explicitly re-
lated to measurable genetic parameters, and
they do not provide a way to predict the
evolution of a reaction norm when it is not
at equilibrium (see Charlesworth, 1990).

The second approach considers discrete
environments (such as the host species of a
herbivarous insect) and assumes a quanti-
tative-genetic basis for the inheritance of the
reaction norm. A character’'s expression in
twa (or more)} different environments can
be viewed as two (or more) genetically cor-
related characters (Falconer, 1952). Viaand
Lande (1985) use this idea to formulate
quantitative-genetic models for the evolu-
tion of a trait that is expressed differently
in two environments [see Via (1987) for
maore enviranments).

The quantitative-genetic models have
several advantages over the optimization
models. They predict evolutionary trajec-
tories in addition to equilibria, are based on
measurable parameters of inheritance, ex-
plicitly account for between-individual
variation, and do not assume a priori the
existence of fitness trade-offs. This ap-
proach thus provides a natural framework
for empirical study of adaptation and con-
straint in the evolution of reaction norms.
A limitation of previous quantitative-ge-
netic models is that they do not apply to
continucus forms of environmental varia-
tion {such as temperature), unlike the op-
timization maodels.

In this paper we integrate the strengths of
both previous approaches by extending the
quantitative-genetic approach to reaction
norms that vary as a function of a contin-
uous environmental variable. Because the
phenotype produced in each environment
can be viewed as a different character and

R. GOMULKIEWICZ AND M. KIRKPATRICK

since there is a continuum of environmerntal
states, these types of reaction norms rep-
resent infinite-dimensional characters. We
describe a basic quantitative-genetic model
for the evolution of infinite-dimensional
characters introduced by Kirkpatrick and
Heckman (1989} and show how it may be
applied to the evolution of continuous re-
action norms.

Reaction norms are selected in response
to environmental variation. We investigate
reaction norm evolution under several forms
of spatial and temporal environmental het-
erogeneity. Our analyses highlight how the
presence or absence of genetic constraints
affects evolution. First, two models of spa-
tial heterogeneity, soft and hard selection,
are presented. Second, we consider evolu-
tion when the environment varies tempo-
rally within a generation and when the en-
vironment fluctuates between generations
but is constant within them. Following these
analyses, we present simulation results that
illustrate how the forms of environmental
variation and genetic variation can influ-
ence evolutionary trajectories and even the
equilibria that are reached. Finally, we dis-
cuss how the quantities that appear in the
models can be empirically estimated and
used to test hypotheses regarding the roles
of selection and constraints in influencing
the evolution of reaction norms.

THE MODELS

Consider the reaction norm of a trait, de-
noted by 3(-), that varies as a function of a
continuous environmental variable. For ex-
ample, 3(x)} could represent lizard sprint
speed capacity at temperature x (see Hertz
et al., 1988). The population mean reaction
norm i denoted 3 so that the mean phe-
notype expressed in environment x is sim-
ply 3(x). No assumptions are made regard-
ing the particular form of 3. In fact, 3 need
not even be continuous. It might, for ex-
ample, represent expression of cannibalistic
and omnivorous tadpole morphs as a func-
tion of a pond’s chemical cues (Pfennig,
1989). Our goal is to determine the evolu-
tionary change in 3.

We assume that the reaction norm of an
individual can be represented by the sum
of two (square-integrable) functions. The
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first function is the additive-genetic com-
ponent inherited from the individual’s par-
ents and the second is attributable to non-
additive effects including dominance,
developmental noise, and other within-en-
vironment effects (Falconer, 1981; Via and
Lande, 198%; Lynch and Gabriel, 1987).
These two components are defined to be
statistically independent of one another and
are assumed normally distributed on an ap-
propriate scale, as is standard in quantita-
tive genetics (Falconer, 1981; Bulmer, 1985;
see below). The normality assumptions may
often provide reasonable approximations to
a more complicated reality. The models also
assume that generations are nonoverlap-
ping, that inheritance is autosomal, and that
effects due to random genetic drift, muta-
tion, epistasis, and recombination are all
negligible compared to selection.

Normal distributions of functions, termed
Gaussian stochastic processes, are natural
extensions of multivariate normal distri-
butions. In the same way that a multivariate
normal process is characterized by a mean
vector and a covariance matrix (Bulmer,
1985), a Gaussian process is characterized
by a mean function and a covariance func-
tion (Poob, 1953). For our models of re-
action norms, a Gaussian process of addi-
tive-genetic effects is characterized by a
mean function 3(-) and a covariance func-
tion G{-, -). In particular, G(x, ») is the ad-
ditive-genetic component of the covariance
between the phenotype 3(x) that an individ-
nal would express in environment x, and
the phenotype 3(») that it would express in
environment y. Similarly, G{x, x) is the ad-
ditive-genetic component of variance for
4(x). The patterns of additive-genetic vari-
ation summarized by §G result from changes
in gene expression {Paterson et al., 1991)
and physiological activity of gene products
{Hochachka and Somero, 1984) in response
to changes in the environment. If G(x, v) is
positive then genes which increase 3(x) will
tend to increase (), while if G(x, V) is neg-
ative genes which increase 3(x) will tend to
decrease 3(37). The additive-genetic variance
G(x, x} will be positive or zero depending
on whether or not there is a heritable com-
ponent to the variability in 3(x).

The evolutionary response to selection on
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reaction norms is described by the equation

axx) = f G(x. ¥)B() dy. (1)

where Aj(-) is the evolutionary change in
the mean reaction norm after one genera-
tion of selection and A(-) is the selection
gradient function {Kirkpatrick and Heck-
man, 1989). Integration is taken over the
set of environments. This equation extends
the familiar multiple characters matrix
equation Az = Gj (Lande, 1979).

The selection gradient function, 8(-), de-
scribes the forces of directional selection on
reaction norms (Lande and Arnold, 1983;
Kirkpatrick, 1988). For example, a positive
value of 8(x) indicates that selection favors
values of 3(x) that are larger than average,
holding all other traits 3(») constant. When
A(x) = 0, selection has no tendency to change
the mean value of 3(x).

Once the selection gradient is determined
for a particular form of selection, the re-
sulting evolutionary change in 3 over a sin-
gle generation can be determined via Equa-
tion (1) even if the additive-genetic
covariance function changes between gen-
erations. In this paper, we do not model the
evolution of genetic covariance functions;
rather, we will assume G to have been em-
pirically determined (as described in the
Discussion). This simplifies our analyses
considerably but may restrict their appli-
cability to intermediate time scales and rel-
atively small evolutionary changes in the
mear. Recent work by Barton and Turelli
(1987), Turelli (1988), and Turelli and Bar-
ton {1990) shows that evolution of a popula-
tion’s mean phenotype can often be accu-
rately predicted for tens to hundreds of
generations by a Gaussian model which as-
sumes constant additive-genetic variances,
even when the actual genetics are non-
Gaussian and have nonconstant additive-
genetic variances.

Although we assume G is given, 8 must
still be determined. Two approaches can be
taken. The first is to measure the selection
gradient function directly. This requires data
on the phenotypes and fitnesses of individ-
vals, but no further information about the
ecological setting of the population is nec-
essary. These methods are described in the
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Discussion. An alternative approach is to
make assumptions regarding the forms of
environmental variation that the popula-
tion experiences, and then deduce the se-
lection gradient function that would result.
We pursue this approach now in order to
ilustrate several general principles of re-
action norm evolution.

When selection is frequency-indepen-
dent, there is a direct relation between the
strength of selection acting on a trait and
the effect that a change in the mean of that
trait will have on the population’s mean fit-
ness (Wright, 1942, 1969; Lande, 1976,
1979). In the simplest case of a single trait,
the selection gradient is equal to the gradient
(i.e., the derivative) of the logarithm of the
population’s mean fitness with respect to
the mean of that trait. This result extends
in a natural way to cases involving multiple
traits by using the gradient (i.e., the partial
derivatives) of In W with respect to the mean
of each trait {(Lande, 1979). The value of the
selection gradient for each trait thus reflects
the effect that a small change in the popula-
tion’s mean for that trait has on the popula-
tion’s fitness, holding all other traits con-
stant. For infinite-dimensional traits such
as reaction norms, this rule continues to hold
{Gomulkiewicz and Beder, unpubl. data).
The value of 8(x), the selection gradient in
environment x, measures the impact of a
small change in 3, the mean phenotype ex-
pressed in environment x, on the logarithm
of population mean fitness. This can be cal-
culated by applying the infinite-dimension-
al gradient operator Vg, to the logarithm of

the population’s mean fitness, In W, That
is,

B(x) = Vyulln W). (2)

In practice, Vy,[ln W] is calculated using
the same method of partial differentiation
that is used to determine the selection gra-
dient vector in conventional models of
quantitative characters (see Appendix A and
below). Technically, Vy;[ln B] is a func-
tional derivative (Courant and Hilbert,
1953).

How a reaction norm evolves depends on
the genetic variation present as well as the
form of selection it experiences. The addi-
tive genetic covariance function § can fall
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into either of two categories; these have ma-
jor evolutionary implications. If genetic
variation is available for all conceivable
evolutionary changes in 3 then G is said to
be nonsingtilar. (Mathematically, a covari-
ance function is nonsingular if integral
transforms with kernal G can be inverted;
see Kirkpatrickand Heckman, 1989). When
G is nonsingular, the mean reaction norm
will evolve until directional selection ceases
{that is, 8(x) = 0 for all x). If there is a
reaction norm that maximizes fitness lo-
cally, an equilibrium will be reached when
3 reaches this optimum.

Alternatively, G may be singular, mean-
ing that no additive genetic variation exists
for certain kinds of evolutionary changes in
the shape of 3. In this case, the population’s
mean reaction norm may stop evolving even
when directional selection on it persists (that
is, A(x) # O for some or all x). Thus the
population can reach an evolutionary equi-
librium when the mean reaction norm is not
at the optimum, although evolution still
maximizes fitness to the extent that it can
(Viaand Lande, 1985). In this situation, any
adaptive evolutionary change in one part of
the reaction norm necessarily produces
maladaptive change in other parts (see Fig.
1 top). That is, fitness trade-offs occur with-
in the reaction norm. For these reasons, we
use the terms “singular genetic covariance
function,” “genetic constraints,” and “trade-
oftfs” synonymously. Both empirical anal-
vses and theoretical considerations (Kirk-
patrick and Lofsvold, 1989, unpubl. data)
suggest that genetic constraints may be
common for infinite-dimensional traits.
Constraints may eventually be altered or
disappear entirely with changes in the ge-
netic structure of the population (Turelli,
1988; Charlesworth, 1990). Their presence
will nevertheless affect the evolutionary
outcome in the short term, and may do so
for evolutionarily long time scales as well.
We are therefore compelled to consider the
possibility of constraints in the evolution of
reaction norms.

Classes of Traits

There are two classes of traits whose re-
action norms are of general interest (Futuy-
ma and Moreno, 1988). At one extreme are
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traits referred to as labile (Schmalhausen,
1949). An individual’s phenotype for a la-
bile trait adjusts rapidly to changes in the
environment due to physiological and be-
havioral responses by the organism. One
example of a labile trait 1s the locomotory
performance of poikilotherms as a function
of their body temperature (Huey and Ben-
nett, 1987; Huey and Kingsolver, 1989). At
the ather extreme are traits that are termed
nonlabife. The degree of expression of a
nonlabile trait depends on the environment
experienced during a sensitive period of de-
velopment. Thereafter, it is fixed so that
only one of the possible phenotypes in an
individual’s reaction norm is expressed dur-
ing its lifetime. In a classic experiment with
Drosophila melanogaster, Waddington
(1953) induced development of a cross-
veinless wing condition by exposing pupae
to heat shock. Wing venation is thus an ex-
ample of a nonlabile trait. We also classify
as nonlabile any trait that can only be ex-
pressed at one stage of ontogeny, such as
age at maturity (see Trexler, 1989).

Forms of Environmental Heterogeneity

Reaction norms result from the interac-
tion of organisms with their environments.
In a uniform habitat, the environmental
contribution to the phenotypes of individ-
uals 1s constant and so reaction norms are
not expressed or selected. Reaction norms
do experience selection, however, when the
environment varies in either space or time.

An individual can experience temporal
heterogeneity through twao causes. First, the
habitat it occupies may change. Second,
spatial variation is translated into temporal
variation if the individual moves over dis-
tances that are larger than the size of the
environmental patches. From an evalution-
ary standpoint, this results in the same pat-
tern of selection as is experienced by sessile
organisms in a changing habitat, and we
therefore treat both situations as temporal
variation. Our discussions of spatial vari-
ation, in contrast, refer to situations in which
the sizes of environmental patches are large
relative to the movements of individuals,
that is, when the spatial “‘grain” of the en-
vironment (Levins, 1968) is coarse. Each
patch may encompass many individuals or
may be inhabited by only a single individ-
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ual. In the following two sections, we con-
sider selection on reaction norms generated
by spatial and temporal variation.

SPATIAL VARIATION

Selection will act on a reaction norm when
individuals are distributed over environ-
mental patches that affect the expression of
a trait or when different patches favor dif-
ferent values for the trait. Qur models of
spatial heterogeneity assume that the rela-
tive frequencies of different patch types re-
main constant from generation to genera-
tion. Individuals are distributed randomly
among patches, which implies that there is
no habitat choice. Mating 1s random among
all the different patches so that each patch
is actually a subpopulation within an inter-
breeding population. This assumption im-
plies that the dispersal distances of selected
adults or their gametes greatly exceeds the
size of the patch in which they were selected.
While the level of gene exchange among the
patches assumed here is extreme, the tech-
niques we introduce can be modified to
model more restricted migration patterns,
including habitat selection.

The environment in each patch is as-
sumed to be constant during each genera-
tion. This implies that within a patch, ex-
pression of both labile and nonlabile traits
is constant, Any distinction between nonla-
bile or labile traits in these models of spatial
heterogeneity is therefore moot (see Cas-
well, 1983).

Genetic models of evolution in patches
distinguish between two forms of popula-
tion regulation, termed hard and soft selec-
tion (Wallace, 1968; Christiansen, 1975).
Under hard selection, the contribution of a
particular patch to the gamete pool is pro-
portional to the mean fitness of individuals
inhabiting the patch (Dempster, 1955). This
occurs when the strength of density-depen-
dent population regulation within patches
is weak. For example, seeds in certain plant
populations may be sparsely dispersed over
various patches. Mortality selection then
produces different numbers of adults in each
patch depending upon the viabilities of the
zygotes dispersed to it. Under soft selection,
the contribution of gametes from each type
of patch is fixed and independent of the mean
fitness of its inhabhitants {(Levene, 1253). Soft
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selection operates when strong density-de-
pendence within each patch determines the
total number of individuals that survive
there, regardless of the genotypes of the ini-
tial inhabitants. This would be the case if|
say, the number of adult plants supported
in a patch was limited by access to sunlight.
If juveniles can grow only in spaces vacated
by deaths, then the number of adults sur-
viving in each patch would be independent
of the genotypes of the residents. Holsinger
and Pacala {1990) discuss the types of traits
that are expected to be soft and hard se-
lected.

In the following models of hard and soft
selection, we let f(x) denote the frequency
of environmental condition x. Tt is assumed
that an individual inhabiting an envi-
ronmental state x expresses phenotype
3(x) throughout its lifetime and has fitness
W (3, x). Finally, the mean fitness of indi-
viduals inhabiting environment x 1s denot-
ed by W (x).

Soft Selection

Given soft selection and random dis-
persal of gametes, individuals selected with-
in environments ranging from x to x + dx
contribute a fraction f{x)dx of the offspring
to the next generation. The evolutionary
change in the mean reaction norm due to
selection is found using Equation (1) with
selection gradient

plx) = vs(le: f SO} In WA(y) d)’]A 3)

Equation (3) is found by extending the mul-
tiple characters result {Via and Lande, 1985)
to infinite dimensions (Appendix A). The
integration is taken over environments.
According to the definition (2), the inte-
gral in brackets on the right hand side of (3)
represents the mean log fitness for the whole
population. The population mean fitness
under soft selection, W, g, is thus the geo-
metric mean fitness (Ewens, 1979 p. 293):

Wn = exp [f f0) In W) dy}- 4)
Consequently, Equation (3) can be writ-
ten as

B =V;lln W 4l (5)
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The geometric mean fitness (4) defines an
adaptive topography for evolution. Along
with the additive-genetic covariance func-
tion G, this adaptive topography determines
the rate and direction of evolution of the
mean. reaction norm. When the selection
gradient function B(x) is equal to zero for
all x, the mean fitness in each environment
is locally maximized by this form of selec-
tion (Wright, 1969; Via and Lande, 1985).

We now present a specific example to il-
lustrate the form of a selection gradient
function under soft selection. Consider sta-
bilizing selection that favors the phenotype
#(x) in environment x. If x represents am-
bient temperature, then 3(x) might represent
the body temperature that a lizard main-
tains at that ambient temperature and #x)
would be the optimal body temperature.
Weak stabilizing selection can be approxi-
mated by a Gaussian fitness function with
optimum #(x}:

) — 8P
2w¥(x) } > ©®

where «?(x) is inversely related to the
strength of stabilizing selection in environ-
ment x. We will assume that «?(x) is much
larger than the phenotypic variance of 3(x).
The selection gradient function for soft se-
lection may be found using the indirect
method discussed in Appendix A, which
shows that

Wi, x) « exp{

B(x) — 3x)
w¥x)

B(x) = f(x) N

This result reveals that the strength of se-
lection in environment x 1s propoertional to
the difference between the expressed mean
and optimum, 8(x) — 3(x), the relative fre-
quency of x, f(x), and the strength of sta-
bilizing selection, 1/w%(x).

According to (7), the selection gradient
vanishes when the mean reaction norm co-
incides with the optimum, ie., 3(x) = #x)
for all x. This means that the optimum re-
action norm is an evolutionary equilibrium.
Furthermore, 3(x) will always reach &x)
whenever there are no genetic constraints
(G is nonsingular). When § is singular, how-
ever, the reaction norm will generally not
be able to evolve to the optimum. The pop-
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ulation’s mean is constrained to evolve
within a subset {technically, a manifold) of
all possible reaction norms. This set of
“evolutionarily accessible” reaction norms
(Kirkpatrick and Lofsvold, unpubl. data) is
determined by the population’s initial 3 and
G (provided the additive genetic covari-
ances remain approximately constant). Once
determined, 3 and G specify a unique equi-
librium reaction norm whose location can
be calculated directly (Kirkpatrick and
Lofsvold, unpubl. data). While the mean
reaction norm will generally not be optimal
at equilibrium, it is the reaction norm with-
in the set of accessible reaction norms that
maximizes the population’s mean fitness.
Implications of this type of constrained
equilibrium are illustrated by the simula-
tions presented below.

Hard Selection

The distinguishing feature of hard selec-
tion is that the contribution by a patch to
the population’s gamete pool depends on
the mean fitness of the individuals that in-
habit the patch. Individuals occupying en-
vironments in the range (x, x + dx} con-
tribute a proportion [ (x)/ W . lf(x)dx
of the offspring, where

Woaed = f W(x)f(x) dx (8)

is the arithmetic mean fitness for the entire
population. By extending the multivariate
result (Via and Lande, 1985) to infinite di-
mensions (Appendix A) and using (2), it can
be shown that the selection gradient for hard
selection is

ﬁ(X) = vﬁ(x] [hl thrd}- (9}

Comparing (9) with {5), we see that hard
and soft selection are distinguished by the
type of mean fitness that determines the ef-
fects of selection. For hard selection, this
mean fitness is arithmetic (8) while for soft
selection it is geometric {(4). These mean
fitnesses also determine the adaptive to-
pographies for the corresponding one-locus
models (Dempster, 1955; Li, 1955).

When there is weak Gaussian stabilizing
selection within each environment (Eq. 6},
the selection gradient function under hard
selection is
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v_V(x)] 8x) — 39 10)

A(x) [f(X) 7| w0
This expression may be found by applying
the same procedures used to obtain (7) (Ap-
pendix A).

In the absence of genetic constraints (G
nonsingular), Equation (10) implies that the
population will always evolve to the opti-
mum reaction norm 4§, as it will under soft
selection. When genetic constraints are
present, however, it is difficult to fully an-
alyze the possible evolutionary outcomes,
Unlike the case of soft selection, hard se-
lection results in a selection gradient that is
a nonlinear function of 3, which prevents us
from solving analytically for the equilibri-
unt. Simulation can be used, however, to
find the equilibrium for any particular case
of interest. The equilibrium that is reached
depends on the population’s initial reaction
norm, as is also true for soft selection. In
contrast to soft selection, we have found
examples in which there is more than one
locally stable equilibrium within the set of
evolutionary accessible reaction norms
specified by § and the initial mean reaction
norm 3. This further highlights the impor-
tance of a population’s history to its ulti-
mate fate: if two populations diverge in their
mean reaction norms and are then subject
to identical forms of hard selection, they
may evolye to different equilibria even if
the same set of reaction norms are evolu-
tionarily accessible to both. The role of his-
tory can also be an important factor in the
evolution of populations that experience
temporal fluctuations, which is our next
topic.

TEMPORAL VARIATION

We now consider models for the evolu-
tion of reaction norms when environments
vary temporally. While natural populations
encounter temporal variation on all scales,
we will simplify our discussion considerably
by focussing on two extremes. The first oc-
curs when variation is within generations so
that individuals experience a sequence of
environments within their lifetimes. When
treating within-generation temporal varia-
tion, we will assume that every individual
experiences the same distribution of envi-
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ronments {(which may or may not be en-
countered in the same sequence) and that
this distribution is the same in each gen-
eration. This situation may roughly corre-
spond to the thermal variation experienced
by long-lived poikilothermic vertebrates.
The second temporal scale we consider oc-
curs between generations. Qur major sim-
plification in this case is the assumption that
individuals within the same generation all
experience the same fixed environment. This
model might represent, albeit roughly, the
type of thermal variation encountered by
alternate generations of multivoltine in-
sects.

Labile traits are capable of responding
plastically to environmental heterogeneity
so that when there is within-generation vari-
ation, any individual may express a number
of phenotypic states. Nonlabile traits, how-
ever, are fixed whether or not environmen-
tal conditions change. So even if we assume
a constant form of fitness, W3, x), labile
and nonlabile traits require separate treat-
ments when environments x vary within
generations. In contrast, labile and nonla-
bile traits may be treated in the same way
in our models of between-generation vari-
ation because the environment is assumed
to be constant within each generation.

Within-Generation Variation

We now present models that can be used
to investigate the evolution of reaction
norms when environments fluctuate within
generations. As mentioned before, within-
generation heterogeneity affects labile and
nonlabile traits differently. We present first
a model] for the evolution of labile traits and
then a treatment of nonlabile traits.

Within-generation temporal variation will
cause a labile trait to be expressed in dif-
ferent ways by a single individual. We will
focus on a labile trait that has completed
development and changes solely in response
to environmental fluctuations. If the envi-
ronment is changing continuously, the phe-
notype of a labile trait is constantly being
adjusted {(e.g., the adjustment of pupil size
to changing light conditions). To specify the
set of phenotypes that are expressed and
selected within a generation, we need to de-
scribe how the environment varies. Suppose
that the environmental condition at time ¢
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is given by x,. By assumption, all individ-
uals experience the same environmental
conditions and consequently, the phenotype
expressed by a member with reaction norm
3 at time ¢ is 3 = #(x,).

To focus discussion we present a partic-
ular case of continuous within-generation
temporal variation and Gaussian stabilizing
selection where the selective optimum and
(instantaneous) width in environment x are
8(x) and v*(x) respectively. This could ap-
proximate, for example, selection by pre-
dation on lizard sprint speed if predator ac-
tivity is mediated by temperature. Appendix
B contains derivations of the selection gra-
dient for both labile and nonlabile traits
when the environment varjes within a gen-
eration. Applying those results to the pres-
ent case shows that the selection gradient
under weak selection is (approximately)

~ TX)OCx) ~ 30

¥H(x) ’
where 7(x) indicates the time spent in en-
vironment x. Note that »*(x) has units of
time (see Appendix B). The logarithm of the

population mean fitness W corresponding
to Equation (11} is defined by

1 f TCMB(x) — 309
2 (x)

B(x) (11}

In W= — dx.

(12)

Given that there are no genetic con-
straints, the mean reaction norm will evolve
along the adaptive topography (12) to the
optimum # as intuition might predict. Ex-
pressions (11) and (12) show that the rate
at which the optimum is approached in en-
vironment x depends on both the width,
v*(x), and duration, T(x), of selection in that
environment. As in the previous cases, if
the genetic covariance function is singular,
then the optimal responses may not evolve,

We now turn to the evolution of nonlabile
traits that experience within-generation en-
vironmental heterogeneity. Nonlabile traits
are fixed once their development is com-
plete. Although the details do not add sub-
stantively to our present discussion, for
completeness we present in Appendix B a
maodel for the evolution of nonlabile char-
acters that are subjected to varying selection
within generations. The major conclusion is
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that, with no genetic constraints, mean re-
action norms for nonlabile characters will
evolve along an adaptive topography to an
optimal “compromise™ that accounts for the
intensities and durations of within-genera-
tion fluctuations in selection. This optimal
compromise will generally not be attained
if genetic constraints are present,

Within-generation and between-genera-
tion temporal variation share the property
that variability is encountered sequentially.
Unlike the case of between-generations fluc-
tuations (see below), however, the order in
which variation is encountered within a
generation need not affect the course of evo-
lutionary change. In this respect, selection
that varies within a generation is more sim-
ilar to spatial variation. What sets within-
generation heterogeneity apart is that, in a
single generation, it can affect different parts
of the reaction norm of a labile trait. It is
only this form of environmental variability
that selects, in every generation, lability it-
self,

Between-Generation Variation

In the preceding models, the population
as a whole experiences a variety of envi-
ronmental conditions each generation. In
our model of between-generation variation,
by contrast, the entire population is sub-
jected to a single environment per gener-
ation. A consequence of this is that a popu-
lation’s course of evolution depends upon
the sequence of environments it encounters.
This differs from evolution under the mod-
els of spatial and within-generation tem-
poral heterogeneity in which evolutionary
trajectories each follow a regular course
along an adaptive topography. Because of
its dependence on the actual sequence of
environments, an analysis of a general mod-
el for between-generation variation would
have limited application. Qur goal in this
section is simpler: to present a basic model
which investigators can adapt for the study
of biologically interesting cases.

Assume that in generation x, a population
encounters the environmental condition x,,.
For instance, x,, might be the average pho-
toperiod. A population member with re-
action norm j; expresses the phenotype 3(x,,)
and has fitness W,(;, x,). To simplify no-
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tation, we assume that the form of selection
is constant in time so that fitness in gener-
ation # is represented simply by W73, x,).
We also assume that phenotypes not ex-

- pressed in environment x, have no effect on

the population mean fitness. The popula-
tion mean fitness at generation n, W,, thus
equals the mean fitness within environment
Xx,, that is, W, = H/(x,). It is shown in Ap-
pendix A that the selection gradient func-
tion in generation # is

By} = Vigy [In W,]. (13)

The logarithm of the population mean fit-
ness in generation », B, 1s defined by

In W, = f 3y — x)in W) dy, (14)

where 8(-) is the Dirac delta function. The
Diirac delta function 1s defined such that

f 8(x — Mh(y) dy

h(x) if x is in the
— Jdomain of integration

(15)

0 otherwise

(see e.g., Dettman, 1969). In our case, A(y)
= In W(y) and therefore [ 5 (x — 3} In W(p)
dy = In W(x) if x is in the range of envi-
ronments.

As an example, consider the selection gra-
dient function in generation » associated
with Gaussian stabilizing selection (Eq. 6).
It is shown in Appendix A that the selection
gradient is, on the assumption of weak se-
lection,

Bx.) — 3(x)
w(x,)

B = 8y — x.) (16)

Equation (16) indicates that selection in
generation # directly acts only on that part
of the reaction norm which is expressed in
environment x,. That is, 8,(y) = 0 for every
y different from x,. The evolutionary re-
sponse to selection in generation # is (using
Eqgs. 1, 15, and 16):

Agn(u) = f G(u, WB.(Y) dy

0x) — 3(x)
wH(x,)

i

G(u, x.) 7
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FiG. 2. Semi-log plot of mean node numbers (solid

points) observed for A. theophrasti raised under five
light environments. Curve shows the estimated pop-
ulation mean reaction norm determined by fitting fourth
degree Lependre polynomials to the data. {For the ra-
tionale behind choosing Legendre polynomials, see
Kirkpatrick et al., 1990). Overfitting the five data points
was avoided by first interpolating data points using
natural cubic splines (Press et al., 1988) and then per-
forming a least-squares fit of the polynomials to the
interpolated data.

From (17), it is clear that the only genetic
component influencing the evolution of the
trait’s expression in environment u is the
additive-genetic covariance between 3(1) and
3(x)-

A feature unique to between-generation
variation is that the selection gradient in any
generation depends upon which environ-
ment is encountered (Eqs. 13 and 14). Each
evolutionary trajectory depends on a par-
ticular sequence or history of environments.
One consequence of this dependency is that
two identical populations initiated at dif-
ferent times will in general follow different
evolutionary paths. This contrasts with the
evolutionary trajectories resulting from spa-
tial and within-generation temporal hetero-
geneity which are, as we have seen, unaf-
fected by the time at which evolution is
initiated. Note, however, that if the prob-
abilities of encountering different environ-
ments in any generation are fixed, then both
population means will eventually reach a
common stochastic equilibrium at which the
probability of observing a particular mean
phenotype in any generation is fixed (see
also Gavrilets and Scheiner, 19914).

SIMULATIONS

We now highlight our main theoretical
findings with a series of simulations, based
on a real data set, which illustrate reaction
norm evolution under soft and hard selec-
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tion. The first simulation shows how genetic
constraints can prevent the mean reaction
norm from evolving to its optimum shape
under realistic conditions. The next two sets
of simulations demonstrate some of the ways
that the form of selection (soft versus hard)
can effect evolutionary trajectories and how
the modes of selection can interact with ge-
netic constraints to determine evolutionary
equilibria.

The simulations are based on data col-
lected for a previous study of velvetleaf
(Abutilon theophrasti) reaction norms. The
data set, graciously provided to us by K.
Garbutt {(West Virginia University), de-
scribes the expression of node number un-
der five levels of light transmission. Data
were collected using a maternal half-sib ex-
perimental design (described in Garbutt and
Bazzaz, 1987). Garbutt employed standard
quantitative genetic techniques to compute
the means, variances, and additive-genetic
covarances (Falconer, 1981; also see Dis-
cussion). Maternal effects are ignored in our
simulations to simplify analysis. From this
data, we estimated the mean and covariance
functions using techniques described in
Kirkpatrick et al. (1990). These functions
are displayed in Figures 2 and 3, We caution
that large statistical uncertainties are asso-
ciated with these estimates; the quantitative
conclusions in this section should be inter-
preted accordingly. This section is intended
solely to illustrate qualitatively the theoret-
ical concepts discussed above as well as to
indicate the feasibility of gathering and an-
alyzing the necessary data.

There are shapes characteristic of a ge-
netic covariance function that determine the
ways in which mean reaction norms may
be deformed during evolution. These char-
acteristic deformations are called eigen-
functions. Along with an initial mean re-
action norm, they determine the set of
evolutionary accessible reaction norms. Ei-
genfunctions are the infinite-dimensional
extensions of the eigenvectors of a matrix
(see, e.g., Kirkpatrick and Heckman, 1989).
Associated with each eigenfunction is an ei-
genvalue that is proportional to the addi-
tive-genetic variance available for the
changes represented by the eigenfunction.
The eigenfunction for the largest eigenvalue
{0.022) of the covariance function is shown
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ADDITIVE GENETIC
COVARIANCE
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Fig. 3. G: estimated additive genetic covariances for expression of log node number under 7%, 13%, 1 7%,
27%, and 100% transmitted light in 4. theophrasti. Upper panel: additive genetic covariance function, §(x, y),
for log node number aver light levels. To avoid an averfit of & to G, data were interpolated with bicubic splines
(Press et al., 1988). Fourth degree Lependre polynomials were fit to the interpolated data and the estimate was
“squeezed” following procedures described in Kirkpatrick et al. {1990). Lower right: eigenfunction associated
with the largest eigenvalue of §. Remaining eigenvalues are 0.010, 0,010, 0.009, and 0.

in Figure 3. This eigenfunction represents
changes in the mean reaction norm that
evolve most rapidly. The estimated covari-
ance function also has three other nonzero
eigenvalues (0.01, 0.01, and 0.009) and one
zero eigenvalue. The zero eigenvalue indi-
cates that the estimated covariance function
is singular and thus that genetic constraints
may be present. Because of the large uncer-
tainties associated with these estimates, we
cannot be confident that the genetic con-
straints are real as opposed to a sampling
artifact. While we are unable to prove sta-
tistically the existence of constraints, our
primary purpose in this section is to illus-
trate evolution in cases where constraints
do exist. We thus treat the constraints as
though they are real and invite more rig-
orous studies.

Our simulations assume weak stabilizing

selection for node number. This form of
selection is plausible since reproductive ef-
fort is reduced for plants that have either
too few nodes (due to reduced vegetation
and hence insufficient energy uptake) or too
many nodes (because of the energy diverted
to growth). In each simulation, evolution
begins from the observed mean reaction
norm (Fig. 2). For simplicity, we assume
that additive-genetic covariances are con-
stant through time. Finally, we set the dis-
tribution of environments (light levels) equal
to a uniform distnibution for convenience.,
This might, however, crudely approximate
the conditions for a population of 4. theo-
phrasti inhabiting the understory of a corn
field, which is one of its natural habitats.
Identical parameters are used for hard and
soft selection cases,

The first set of simulations illustrates how
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FiG. 4. Semi-log plot of equilibrium reaction norm
for node numbers over light states, §, reached by evo-

lution under both hard and soft selection in the pres-
ence of genetic constraints. Additive-genetic covari-
ance function used is that shown in Figure 3. Initial
mearn reaction norm, 3. is the observed mean reaction
norm (Fig. 2). Dashed line is the optimum reaction
norm, 8.

genetic constraints can affect evolutionary
equilibria, We imagine that selection favors
thirty nodes under all light conditions, that
is, (x) = 30 nodes for all feasible light levels
x. The evolutionary equilibria reached un-
der hard and soft selection (which are vi-
sually indistinguishable) are displayed in
Figure 4. This figure shows how far from
optimal the mean reaction morm may be
when genetic constraints are present. We
remark that the shape of the equilibrium
reaction norm shown here depends as much
on the initial mean reaction norm as it does
on the additive-genetic covariance function.
The above theory shows that soft and hard
selection have different adaptive topogra-
phies and, consequently, may produce dif-
ferent evolutionary trajectories and equilib-
ria. Our next two simulations highlight these
points. Due to the nature of these particular
data, hard and soft selection produce dra-
matically distinct trajectories and equilibria
only under biologically unrealistic condi-
tions. Because it is possible that differences
would be more pronounced for other data
sets, we qualitatively illustrate some of the
possibilities by assuming (unrealistically)
that the optimal reaction norm is the con-
stant function #(x) = 0.0067 for all x.
Figure 5 shows how soft and hard selec-
tion can produce different evolutionary
equilibria when genetic constraints are pres-
ent. Note once again that genetic constraints
prevent reaction norms from evolving to
the optimal shape under both modes of se-
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Fic. 5. Semi-log plot of equilibriurm mean reaction

norms obtained under soft selection, .., and hard
selection, .. i the presence of genetic constraints.
Dashed line is the optimum reaction norm f(x). Other
functions and parameters are as in Figure 4.

lection. However, the equilibrium reaction
norms reached under these modes of selec-
tion are strikingly different even though both
simulations were started from the same
mean reaction norm. (Fig. 2) and selection
favors the same optimum in both cases. The
difference is a consequence of the distinctive
way that each adaptive topography (see Eqgs.
4 and 8) interacts with the given pattern of
genetic constraints.

A final set of simulations illustrates how
evolutionary rates can differ under soft and
hard selection when there are no genetic
constraints. As we have seen, absence of
constraints implies a nonsingular covari-
ance function. To satisfy this requirement,
we constructed a hypothetical additive-ge-
netic covariance function which has the
same eigenfunctions as the estimated co-
variance function, but is such that all ei-
genvalues are equal to the largest found from
the data {» = 0.022).

The simulation results appear in Figure
6. As expected, the mean reaction norm
evolves to its optimum under both soft se-
lection and hard selection when there are
no genetic constraints. Comparing the re-
action norms for hard and soft selection at
intermediate times shows that each mean
reaction norm follows a different evolution-
ary trajectory even though the same equi-
librium is eventually reached. These differ-
ences are, once again, due to the distinct
adaptive topographies associated with hard
and soft selection (Egs. 4, 8). These simu-
lations thus demonstrate that, even in the
absence of genetic constraints, evolutionary
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rates may differ under distinct maodes of se-
lection.

DiIsCuUssIoN

Quantitative genetics provides a natural
framework in which to study many kinds
of traits by providing an interface between
theoretical and empirical methods. We have
extended the quantitative genetic approach
to reaction norms by adopting a recently
introduced model for infinite-dimensional
traits. Individuals are represented by a func-
tion describing the phenotypes that are ex-
pressed across a continuum of environmen-
tal conditions. This model has been used to
study the evolution of reaction norms under
several forms of selection that involve two
patterns of spatial variation (hard and soft
selection) and two modes of temporal vari-
ation (within and between generations).

One general conclusion that emerges from
these analyses is that patterns of genetic
variation for the reaction norms in a pop-
ulation may affect their evolutionary trajec-
tories and equilibria. Regardless of the mode
of selection, a reaction norm may be pre-
vented from reaching 1ts optimal shape if
genetic variation for some changes in its
form are absent in the population. Further-
more, interactions between the mode of se-
lection and these constraints can influence
the final equilibrium that is reached. To il-
lustrate this point, we simulated the evo-
lution of a reaction norm for the velvetleaf
{Abutilon teophrasti) under hypothetical
scenarios involving hard selection and soft
selection. Even when the initial and optimal
reaction norms are identical in the two cases,
the evolutionary rates and end points can
differ.

Whether constraints of this sort are im-
portant in the evolution of reaction norms
in nature is, of course, a question that can
only be answered empirically. Qur models
suggest the data and analyses that would be
appropriate to address this 1ssue. The first
type of information needed regards the form
of selection acting on the population, the
second involves guantifying genetic varia-
tion available for evolutionary changes in
the reaction norm.

The hypothesis that a population’s mean
reaction norm is optimal can be tested by
measuring the selection gradient function 3.
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FiG. 6. Evolutionary trajectories of mean reaction
norms under soft selection. (gray curve) and hard se-
lection {black solid curve) with no genetic constraints.
Reaction norms are shown at generations » = 2,000
and 3,000 of evolution. The optimum (dashed line) is
atrained at equilibrium under both hard and soft sta-
bilizing selection. The genetic covariance function was
constructed to admit maximal additive genetic vari-
ance (. = 0.022) for all eigenfunctions. Other functions
and parameters are as in Figure 4.

The hypothesis is confirmed if 8(x) = ¢ for
every environment x. The selection gradi-
ent function can be obtained using standard
methods to estimate the selection gradient
in each of several environments (i.e., values
of x) (see Lande and Arnold, 1983; Arnold
and Wade, 19844, 19845; Mitchell-Olds and
Shaw, 1987). Although the number of en-
vironments in which data should be taken
depends on how rapidly 8 and 3 change, data
from four or five environments are likely to
be sufficient for many studies. These values
can then be interpolated to estimate the con-
tinuous selection gradient function A(x) (see
Kirkpatrick et al., 1990).

If the selection gradient is nonzero over
some range of environments, this implies
that the mean reaction norm is not at an
optimum. There are several possible causes.
The first is that there are trade-offs within
the reaction norm. This hypothesis can be
tested by analyzing the additive-genetic co-
variance function G. To estimate §, an ad-
ditive-genetic covariance maltrix for ex-
pression of the trait within and across several
environments is obtained using standard
quantitative-genetics methods. Labile traits
are easiest to work with because the phe-
notype of each individual can be measured
in every environment. This allows the
additive-genetic covariances between char-
acter states to be estimated by standard



404

methods (Falconer, 1981; Bulmer, 1985).
Noanlabile traits require a more indirect ap-
proach in which covariances are estimated
with data taken from relatives (as in the
Abutifon example discussed earlier; see Gar-
butt and Bazzaz, 1987); methods are dis-
cussed by Yamada (1962) and Via (1984).
Once an estimate of an additive-genetic co-
variance matrix is obtained, the continuous
additive-genetic covariance function is
found by interpelation using the technigques
described by Kirkpatnck et al. (199Q).

Estimates of the mean and covanance
functions are inevitably based on measure-
ments taken from a finite number of envi-
ronments. A different approach that can be
taken to accommodate this restriction is to
approximate the infinite-dimensional re-
action norm by its values at a finite number
of environments, that is, treat it as a mul-
tivariate trait. It has been shown (Kirkpat-
rick and Heckman, 1989), however, that in-
finite-dimensional methods provide more
efficient empirical descriptions of infinite-
dimensional traits than multivariate tech-
niques. Infinite-dimensional descriptions are
also more valuable for predicting the evo-
lution of infinite-dimensional traits.

The existence of evolutionary constraints
within the reaction norm can be tested by
determining if G is singular. Methods for
this analysis {(including confidence interval
construction and hypothesis testing) are giv-
en in Kirkpatrick et al. (1990) and Kirk-
patrick and Lofsvold (1989, unpubl. data).
If the additive-genetic covariance function
1s found to be singular, this implies that
some evolutionary changes in the mean re-
action norm are not possible. Definitive ev-
idence that these constraints are preventing
the reaction norm from evolving to its op-
timum would be obtained by inserting the
estimates for 8 and G into Equation (1) and
showing that no evolutionary change will
result under this pattern of selection.

If directional selection is observed but
within-reaction norm constraints are not
found, other hypotheses are suggested. Evo-
lution of the reaction norm may be con-
strained by genetic correlations with other
traits. (These correlations may themselves
depend on the environments in which they
are measured; Gebhardt and Stearns, 1988;
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de Jong, 1989, 1990; Scheiner et al., 1991,
Stearns et al., 1991.) For example, by max-
imizing sprint speed at all temperatures, liz-
ards may sacrifice endurance performance
(Huey and Hertz, 1984) or clutch size (Vitt
and Congdon, 1978). This hypothesis can
be tested by extending the genetic analysis
outlined above to multiple traits (see Kirk-
patrick, 1988).

Another hypothesis to account for an ap-
parently suboptimal reaction norm is the
presence of undetected physiological costs.
We distinguish two types of costs that can
affect reaction norms. The first, which we
call “expression costs,” are associated with
a trait’s expression in a specific environ-
ment, for example the metabolic demand
of thermoregulation at a particular temper-
ature (Huey and Slatkin, 1976). The second,
which we call “maintenance costs,” are costs
associated with maintaining the capacity to
respond plastically to a range of environ-
ments, for example the energy involved in
developing and maintaining sweat glands.
Van Tienderen (1991) was the first to con-
sider formally the evolutionary conse-
quences of maintenance costs.

The presence of costs raise two issues.
The first is whether the evolution of the
mean reaction norm can be correctly pre-
dicted it the costs are known. The models
described above can in fact be modified to
accommodate both expression costs and
maintenance costs {Gomulkiewicz and
Kirkpatrick, unpubl. data). The qualitative
results that emerge are similar to what has
already been seen. In particular, the mean
reaction norm will evolve so as to maximize
the population’s fitness. Whether or not an
optimum can be reached depends on the
presence or absence of genetic constraints.

The second question 1s whether selection
on the reaction norm generated by costs is
correctly measured by the empirical pro-
gram outlined above. In the case of expres-
sion costs, the answer is ves. Because the
fitness effects of expression costs are re-
stricted to individual environments, the
procedure described earlier will give a valid
estimate of the selection gradient function.
Selection generated by maintenance costs,
in contrast, will not be correctly measured.
Additional information is needed, specifi-
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cally data on the fitness effects of the unex-
pressed portions of a reaction norm as well
as the expressed portions (Van Tienderen,
1991). Given these data, methods for esti-
mating the selection gradient can be mod-
ified to accommodate maintenance costs
{Gomulkiewicz and Kirkpatrick, unpubl.
data). If these data are unavailable, then a
selection analysis can lead to the incorrect
conclusion that the population is not at a
fitness maximum (Van Tienderen, 1991).
We anticipate, however, that unless main-
tenance costs are large, they will not have a
substantial impact on the equilibrium re-
action norm.

There are a variety of additional reasons
why a reaction norm might not lie at its
evolutionary optimum, including mutation
pressure, gene flow, and the possibility that
it will evolve to the aptimum if given enough
time. These hypotheses, however, are ge-
neric to all kinds of traits and have not been
suggested as particularly important in the
evolution of reaction norms.

Much of the work on reaction norms has
developed around the concept of phenotyp-
ic plasticity. Phenotypic plasticity (or sta-
bility) is generally defined in terms of some
measure of across-environment phenotypic
variability. A variety of methods have been
proposed to describe and quantify pheno-
typic plasticity (reviews in Freeman, 1973;
Lin et al., 1986, Schlichting, 1986). Simple
measures include the range, variance, and
coefficient of variation of phenotypic means
over environments (e.g., Falconer, 1990).
Other common measures, based on linear
regression analyses of phenotypes over en-
vironmental indices, include the regression
coefficient (e.g., Finlay and Wilkinson, 1963;
Jinks and Connolly, 1973 Falconer, 1981;
Bierzychudek, 1989) and the residual vari-
ance (Eberhart and Russell, 1966). Scheiner
and Goodnight (1984) used a two-way anal-
ysis of variance on genotypes and environ-
ments, and defined plasticity to be the frac-
tion of the tatal phenotypic variance due to
environmental variance and genotype-en-
vironment interaction (see also Scheiner and
Lyman, 1989). More complicated descrip-
tions of reaction norms have also been used,
for example, two-line and quadratic regres-
sions of phenotypes on environments (Jinks
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and Pooni, 1979, 1988; Pooni and Jinks,
1980).

Although different in many details, these
previous approaches are similar in that they
reduce all the data about the reaction norms
in a population to one or two statistics. This
kind of simplification is useful for many de-
scriptive and comparative purposes. Their
limitation, however, is that they donot have
sufficient information to predict the evo-
lution of the reaction norm or to analyze
the underlying cause of an equilibrium (Le-
wontin, 1974; Gupta and Lewontin, 1982;
Sultan, 1987; van Noordwijk, 1989). These
are exactly the capabilities that are needed
to answer many of the questions that have
been posed by evolutionary biologists who
study phenotypic plasticity and reaction
norms. It is in this context that the infinite-
dimensional approach developed here may
be useful.

Several previous studies have developed
genetic models for the evolution of a con-
tinuous reaction norm. Lynch and Gabriel
(1987) studied a model for the reaction norm
of total fitness. Their model assumes that
fitness is a Gaussian function of the envi-
ronmental state, and the reaction norm
evolves through changes in the mean and
variance of this function. Thus the shape of
all possible reaction norms are assumed to
follow Gaussian curves and evolution is re-
stricted to two evolutionary “degrees of
freedom,” specifically the reaction norm’s
mean and variance. Gavrilets (1986} and
Gavrilets and Scheiner (19914, 19918) pro-
posed models in which the reaction norm
is a polynomial of the environmental state,
and derived equations for the evolution of
linear and quadratic reaction norms. The
genetic model discussed in this paper can
roughly be thought of as an extension of
these earlier models to cases in which no
prior assumption is made about the current
or future shape of the reaction norm; rather,
constraints are deduced from the data.

Our models of the evolution of mean re-
action. norms complement the numerous
ecological investigations of adaptation in
heterogeneous environments (e.g., Van Va-
len, 19635; Levins, 1968; Roughgarden, 1972;
Antonovics, 1976; Caswell, 1983; Garbutt
et al., 1985). Measures of population level
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phenotypic variability used in those studies,
such as niche width, can be derived from
our descriptions of reaction norms and their
distributions. Alternatively, these studies
describe types of spatial and temporal vari-
ability that can be incorporated in our mod-
els of reaction norm evolution. In addition,
the additive-genetic covariances required for
our models may ultimately be explained by
research on the role played by genotype-
environment interaction in determining
components of genetic variances and co-
variances (Gavrilets, 1986; Gimelfarb, 1986;
Gregorus and Namkoong, 1986; Via and
Lande, 1987; Gillespie and Turelli, 1989).
The previous work most similar to ours
1s Via and Lande’s (1985) model for the
expression of a trait in two discrete envi-
ronments. The present work complements
theirs by extending the quantitative genetic
model to a continuum of environments. We
have, however, highlighted somewhat dif-
ferent aspects of the probable outcome of
evolution. Via and Lande (1985) empha-
sized the effects that patterns of genetic vari-
ation have on trajectories and rates of ap-
proach to an evolutionary optimum when
the optimum will eventually be reached.
This paper has focussed, in contrast, on
the importance of genetic constraints in pre-
venting evolutionary optimization. More-
over, we suggest that such constraints may
be common. The basis for this view lies in
the extreme number of the traits considered
here. When more than two traits are under
selection, constraints on their evolution can
exist even when all of the pairwise genetic
correlations are less than unity (Dickerson,
1955; Via and Lande, 19835; Via, 1987).
Roughly speaking, the larger the number of
traits, the easier it is for the genetic covari-
ance matrix to be singular. When dealing
with reaction norms that vary in response
to a continuous environmental cue, the ef-
fective number of traits under selection is
infinite and the possibility of constraints is
maximized. Analyses of growth trajectories,
which are another type of infinite-dimen-
sional trait, suggest that constraints may be
common in the evolution of high-dimen-
sionality phenotypes (Kirkpatrick and Lofs-
vold, 1989, unpubl. data). A major chal-
lenge is to determine whether such
constraints have actually played an impor-

R. GOMULKIEWICZ AND M. KIRKPATRICK

tant part in determining the outcome of re-
action norm evolution.
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APPENDIX A

We provide here some rules of association that may
be used for extending multivariate characier results 1o
infinite-dimensional characters and demonstrate their
application for several of the madels presented in the
text. The first rule is that functions are the infinite-
dimensianal extensions of vectors and matrices: the
extension ofthe vectorz =(z,, z,,. . ., z,}isa univariate
function, 4(x), while that of a matrix G = {G,} is a
bivariate function, G{x, ). A second rule is that inte-
gration is the infinite-dimensional extension of sum-
mation. This implies, for example, that the infinite-
dimensional extension of the vectar produet y'z =

¥, ¥z, is the integral f ¥(x){x} dx and the extension
of the matrix-vector praduct Gz = {Z Gz,i=1,
K

i, n} is the function f G(x, W30 dv. Finally, con-

sider the solution z = G~'b to the equation Gz = b
{assuming G is invertible). The infinite-dimensional
extension, denoted G-'A{x), is the solution to the in-

G(x, ¥)00) dy = b(x) (Kirk-

patrick and Heckman, 1989).

Any correct application of these rules to multiple
characters results does not constitute a proof for infi-
nite-dimensional characters but rather represents a
practical method of obtaining results. These results can
be rigorously justified under the biologically mild re-
striction that functions be square-integrable (Kirkpat-
rick and Heckman, 1989). For the purposes of this
paper, the most convenient application of these rules
is in abtaining selection gradient functions for infinite-
dimensional charactecs from theic multiple characters
counterparts. A direct, rigorous computation of the
infinite-dimensional selection gradient, while produc-
ing the same selection gradient function as the indirect
method of extension, requires techniques and results
from the calculus of variations and Gaussian processes
theory (Gomulkiewicz and Beder, unpubl. data). We
now illustrate how to apply these rules and methods
by analyzing particular examples of soft selection and
between-generation variability.

Consider first a case of soft selection. in which the
fitness W(3, x) of individuals inhabiting environment
x are given by Equation (6). Corresponding to the phe-
notypic functions z(-} and #(-) are the vectors z = {z,,
Zoro 2T and 8=1(8,,4,, ..., 8,7 respectively, and
the Gaussian fitness funetion of a discrete reaction norm
Z in environment { is

vertible integral equation

Wiz, [) o cxp{—u}_

Zea?

(Al)

Assuming that z is multivariate normally distributed
with mean vector Z = {Z|, Z,, . . ., Z,} and phenotypic
variance P, in environment {, and that the frequency
of environment { is f;, Via and Lande (1985} show that
the selection gradient vectaor, 8, has {-th component
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(AD)

assuming weak selection, «? > P, According to the
above rules, the functional extension of this result is
Equation (7). A similar procedure can be used to de-
duce Equation {10) from the fitness function {(6) in the
case of hard selection.

We now consider between-generation temporal van-
ation. To abtain the general selection gradient function
#.4-) in generation n, we begin with the carresponding
multivariate normal model. Since the multivarnate
model requires a discrete set of environments, assume
that the environmental state encountered in generation.
1 has index {,. The selection gradient vector, 3,, must
be zero for all environmental conditians except the one
mdexed by £, where it assumes the value of the selec-
tion gradient in environment ;. That is,

aln W)
(6.1, = az,
Q otherwise .

ifj =i,

By writing the logarithm of the population mean fitness
in generation # as

In W, = 8, 1n W) (A3)
(3, 1s the Kronecker delta: §,, = 1, 8, = 0ifk # {), the
complete selection gradient vector may be computed
with the vector gradient operator ¥;:

£, = Tiln W], {Ad)
To obtain the infinite-dimensional extenscons of (A3)
and (A4), given hy Equations (14} and (13} respectively,
note that the infinite-dimensional extension of &, in
{A3) is the Dirac delta function {see Eq. 13). As a
concrete example, consider Gaussian stabilizing selec-
tion (6). Using {(Al} and the one-character selection
gradient {Lande, 1976), the selection gradient vectaor
in generation n for the associated multiple-characters
maodel, assuming weak selection, s seen to have com-
ponents

T i (AS)

wl,

The infinite-dimensional extension of this result ap-
pears in Equation (16).

ArPENDIX B

In this section, we present a simple model of within-
generation Gaussian selection for the evalution of the
reaction norm of a labile trait and derive the selection
gradient. We hegin with a model in which within-gen-
eration fluctuating selection acts on a general multi-
variate quantitative trait. We assume that no selection
accurs until the trait of interest has completed devel-
opment; any subsequent phenotypic changes occur
solely in response to environmental fuctuations. We
first consider environments that fluctuate at discrete
time points within a generation and from there gen-
eralize to continuous change. The results are then
adapted for multivariate ceaction norms and extended
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to reaction norms over continuous environments. Last,
the selection gradient for a nonlabile trait subjected to
within-generation fluctuating selection 15 determined.

Assume that immediately following development,
multivariate phenotypes z are multivariate normally
distributed with mean vector Z and covariance matrix
P. The time interval between the end of development
and the end of the generation is denoted by [0, 7). If
Gaussian selection occurs with optirnum vector 4, and
width matrix W, at discrete epachs r, {ry = 0,1, .. .,
7y = 1) during [0, 7], the distribution of phenotypes
remains multivanate normal. The mean vector m, and
covariance matrix P, satisfy the following equations at
time 1, { = 1 (Felsenstein, (977}

P~ (wr_—ll + P
m, = (W2, + P! (B1)
AW+ Pm )

The salution satisfying the initial conditions Py, = P,
and m, =Z1s{{ = 1}

(P, = (P"' + ﬁ w,-l)_l

A=l

{ m, = (P“ + i w)

4=a

(B2}

=1
& (E W,-i4, + P“li),
4=
An immediate consequence of (B2} is that the order in
which environments are encountered plays no role in
determining the final mean vector or covariance ma-
trix.

Naw consider the selection gradient under fluctu-
ating selection. First, the selection differential, s, 1s cal-
culated as

S=my— %

(P“l + Nj[ w,-')_l

1=4

(B3}

M-l
-(2 W.-[4, — i]).
=0
Define the matrix W by
L
wW-l = 2 w,-!
i~

and the vector f by
. N
=

1

[W,W-1]-14,

)

ML
W W,
=0

By utilizing the relationship § = P-'s (Lande and Ar-
nold, 1983), the selection gradient takes the form
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8= (W + P)@ — 3. (B4)

These results are general for arbitrarily strong selec-
tion. The Gaussian genetic madel on which we rely,
however, will generally require that selection is weak.
Specifically, the requicement is that the eigenvalues of
W are much larger than those of P (Lande, 1980}, When
this condition holds, {B2) shows that P, = P, = P. In
other words, the effect of selection on the phenotypic
variance will be negligible. Under these conditions (B4}
is approximated as

A=W-@ — 7). (B5)

From (B35) it can been seen that the population evolves

along an adaptive topography which is determined by

the pepulation mean fitness H whose logarithm is de-

fined approximately and to within a constant by the
quadratic form

In B = —38 — )] W-'@@ — 7). (B6)

We next consider selection on multivariate reaction
norms of labile traits. Let the vector Z represent a mean.
reaction norm over a finite set of environments so that
at epoch 0, the k-th component 2, is the average phe-
notype expressed in environment 4. Selection in en-
vironment % has no direct effect on the unexpressed
phenatypes sa that at a time r, in which environment
I is encountered, the selection width matrix W,~! has
only one nonzero component: its &-th diagonal element
[W 1, = L/w? (Note, [A], denates the ij-th compo-
nent of a matrix A and [x], denotes the k-th element
of a vector x). In arder to keep the strength of selection
finite aver the interval [0, 7], we set 1/w? = s(r)I/N.
Here, s(r,) is the instantaneous strength of selection at
epoch 7. Let
if environment
k encountered at time 7,

s(r)
sfr) =

Q otherwise

That is, 5,{r) is a function which indicates the instan-
taneous strength of selection at time r, on the pheno-
type that is expressed in the k-th enviconment. Under

these conditions, W= is a diagonal matrix whose %-th
M-

diagonal element is the sum Esk(r‘}J/N. As the par-
=0
titions of the interval [0, 7] become finer (ie., ¥V in-

3
creases), these sums converge to the integral f 50 dt.
f

Nate also that [W;'4],. = [8]s4r.}I/N. Denating (8],
by 8,41}, we have

L M- j

T Ws| = 3 am)sdr);
1= * N

=0

- f jM:)s,c(r} dt

as ¥ — oo, {B7}

The approximate selection gradient 8 with continuous
selection s thus given by (BS) where the matrix W has
Jh-th entry

[

J: 54t} dt

(W], — (B8)
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and

f 8.(Ds2) dit
e — (B9)

' J: S0y dr

We remark that the cumulative strength of selection
over the interval [0, 7] will be small if 5,{7) is small for
all k.

We can now find the selection gradient function for
the reaction norm of a labile character. An appropriate
extension to infinite dimensions (Appendix A} shows
that under weak selection the selection gradient fune-
tion is (from [BS])

A= w i — 3 (B1O)
where, from {B8) and (B9),
Sy —
wix, ) = e A CITH
f s(x, 1) dt
q
and
3
f B(x, Ns(x, 1y dt
) = - (B12)

J‘j &(x, 1) dr

The bivariate function s{x, ¢) indicates the instanta-
neous strength of selection in environment x at time
. For the example in the text, lA2(x) is the instanta-
neous strength of selection in environment x. In this
case, Equation (B1 1) may be written as

_ a0 — o)

oo (B13)

wix, y)

411

where T{x) 1s the total time out of 7 spent in x. Com-
bining Equations {B10}(B13) with our assurnption that
the optimum depends solely an the environment [i.e.,
#x. £) = 8(x) for all {] yields the selection gradient
function in Equation. (1 1). Similar considerations shaw
that Equation {12) is the infinite-dimensional version
of Equation (B8).

Finally, we determine the selection gradient for a
nonlabile character subjected to fAluctuating Gaussjan
selection. This case is handled exactly as above except
that phenotypes are fixed and constantly selected
throughout the generation interval [0, 7). The envi-
ronmental variable x now refers to the condition under
which the nonlabile character developed. Repeating
the above derivation mutatis mutandis shows that the
selection gradient far a nonlahile character that devel-
ops in environment x and undergoes weak variable
Gaussian selection with optimum 4,(¢} and instanta-
neaus strength 5.4 1s

i -
o) =3y - 0= A By
where
W, = —jl——- and
f 5.8y 4t
i}
il
f 8 (¥s.(1) dt
- a
8. =

f s.7) dr

The phenotype 8, represents an aptimal compromise
in environment x that will evolve provided there are
no genetic constraints.



