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Understanding population responses to novel environments
is a central concern of both evolutionary biology and ecology
(Maynard Smith 1989; Bradshaw 1991; Hoffman and Parsons
1991; Peters and Lovejoy 1992; Kareiva et al. 1993). Pop-
ulations subject to substantial environmental stress, such as
occurs during colonization attempts, human-mediated intro-
ductions or reintroductions, or global climatic change, may
face a risk of extinction. There are many examples of such
extinctions, but many examples are known in which popu-
lations have evolved sufficiently to persist in changed en-
vironments, such as cases of evolved resistance to pesticides
or heavy metal toxins (e.g., Bradshaw 1991). An important
problem for evolutionary biologists is thus to characterize
those combinations of genetic and demographic conditions
likely to result in persistence versus those expected to lead
to extinction in a changed environment.

Theoretical work has characterized circumstances in which
populations have sufficient genetic capacity to avaid extinc-
tion by adapting with sufficient speed to a continuously
changing environment (Pease et al. 1989; Lynch et al. 1991;
Lynch and Lande 1993; Biirger and Lynch 1994). Here we
use simple models to highlight an additional risk faced even
by populations genetically capable of evolving sufficiently
to persist in environments that remain constant following a
single, initial abrupt change. Namely, as a population adapts
to a novel environment, its density may fall below a critically
low level for a period of time, during which the population
is highly vulnerable to extinction by demographic stochas-
ticity. If this occurs, the population is likely to vanish before
it can be rescued by evolution.

To examine this problem, we coupled models of population
dynamics and of evolution by natural selection to identify
conditions for which evolution succeeds—or fails—to rescue
a closed population from extinction following abrupt envi-
ronmental change. The models considered here cover ex-
tremes in both genetics (one-locus and polygenic models)
and population growth (discrete and continuous-time mod-
els). These models lead to a similar conclusion: even pop-
ulations with the genetic wherewithal to potentially persist
in a novel environment may often fail to do so. Moreover,
our analyses help to quantitatively characterize situations in
which evolution by natural selection can effectively rescue
a population from impending extinction. We suspect the qual-
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itative properties of our results may be general features of
evolutionary dynamics in novel environments.

MODELS AND ANALYSIS

Models of demographic stochasticity (e.g., Goodman 1987;
Lande 1993) have identified densities below which popula-
tions risk rapid extinction, even in constant environments.
Closed populations whose per-capita finite growth rates re-
main below unity will deterministically reach such critically
low densities (fig. 1A). Evolution by natural selection can
affect population persistence by influencing population mean
fitness, here equated with mean per-capita growth rate (Crow
and Kimura 1970). Fisher’s fundamental theorem (Fisher
1958; Frank and Slatkin 1992) suggests, roughly, that natural
selection increases population mean fitness, given heritable
variation for fitness. In what circumstances can evolution
increase a declining population’s growth rate sufficiently rap-
idly to prevent the population from deterministically reaching
a given critical low density (as for the population with growth
trajectory a in fig. 1B)?

A Simple Two-Step Model

The following elementary model captures the essence of
this process. Imagine a population that has experienced an
abrupt change in its environment (such as a group founding
an isolated colony in a novel habitat, or a closed island pop-
ulation that has experienced a rapid, steplike change in its
local environment) that places it at risk of deterministic ex-
tinction. That is, immediately following the change in its
environment at time # = 0, we assume the population has
mean absolute fitness Wy < 1 and density Ny. Assuming
nonoverlapping generations, the deterministic dynamics of
population size in generation ¢ are described by

Ny = Wt—INt—Is (D)

where W, is the absolute mean fitness (finite per-capita growth
rate) in generation t.

Now suppose there is a critical density, denoted N, below
which the population is highly susceptible to rapid extinction
by demographic stochasticity. The notion of a critical density
is used here as a heuristic device to examine the influence
of evolution on extinction (see the Discussion below). N, is
basically a “‘rule-of-thumb’’ density, above which it is rea-
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Fic. 1. Population growth in a novel environment. Without evo-

lution (A), a maladapted population inevitably declines to extinc-
tion. With evolution (B), an initially maladapted population may
eventually grow. Trajectory a: the population does not encounter a
high risk of extinction, because it evolves growth quickly enough
to remain above critically low densities. Trajectory b: the population
is highly vulnerable to extinction by demographic stochasticity be-
cause, at time #g, it declines to critically low densities (below N,)
before it can evolve growth (at time tg). Provided it continues to
avoid extinction, the population will, at time tp, grow above crit-
ically low densities, ensuring its deterministic persistence. The pop-
ulation is highly vulnerable to extinction for a period of duration

tp — IE.

sonable to ignore demographic stochasticity. Theoretical
models often suggest N, lies in the range 10-100 (MacArthur
and Wilson 1967; Lande 1993).

Assume the new environment remains constant. Then,
without evolution, W, = W for every ¢, and the population
reaches N, in

tg = (In N, — In Ny)/InW, 2)

generations. This expression also provides a reasonably ac-
curate approximation of the mean time to extinction in a
declining population, given demographic stochasticity
(Lande 1993, eq. 5¢).

Of course, absolute mean fitness itself may change as the
population evolves. If, say, selection were to increase mean
fituess by a fixed amount 3 each generation, the population
would require tg = (1 — W)/ generations to evolve a per-
capita growth rate that exceeds unity (i.e., W, > 1 for t >
tg; see fig. 1B), allowing the population to rebound from its
initial decline. If g < 7, persistence is likely; if tg < t, the
population may face a period of dramatically increased ex-
tinction risk because it is below N,. This simple model shows
that the problem of population persistence in a novel envi-
ronment can be viewed as a race between two processes, one
demographic, another evolutionary (as suggested by Maynard
Smith 1989), operating at different characteristic time scales:
tg and tg. ’

A Discrete-Time, Quantitative-Genetic Model

In more realistic models, mean fitness will not increase at
a constant per generation rate. Nevertheless, the overall dy-
namics of the system can still be viewed as a race between
demographic and evolutionary processes. For instance, con-
sider the evolution of an ecologically important quantitative
trait, z, with polygenic autosomal inheritance (Lande 1976)
(e.g., a character like metabolic rate that governs environ-
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Fic. 2.  Graphic portrayal of the basic elements of an evolutionary
quantitative-genetics model. A quantitative trait (z) in a closed pop-
ulation at generation ¢ is distributed according to a normal density
function (p,[z]) with mean d; and variance P (solid curve). Just after
an abrupt environmental change, the mean phenotype is dp. Indi-
vidual fitness (dashed curve) follows a Gaussian function (W[z]),
with width w, and optimal phenotype at z = 0. The initial growth
rate (at d = dp) is Wy < 1. Evolution moves the mean phenotype
toward the fitness optimum, and when d, < d,R (i.e., the mean phe-
notype lies to the left of the dotted distribution’s mean), the pop-
ulation will grow, because W, > 1 for ¢ > . If the time, tg, required
to move from dj to dy, is too great, the population risks extinction
because of its declining numbers.

mental influences on fitness). Suppose the population has just
colonized a new habitat or experienced abrupt in situ envi-
ronmental change, such that z is subject to selection in its
altered surroundings. (We neglect mutation and drift.)

In the new environment, assumed constant, the optimal
phenotype (measured on an appropriate scale) has absolute
fitness Wp,ax at z = 0. We assume absolute fitness is described
by a Gaussian function with width w: W(z) = Wpax exp[—z%/
(2w)] (fig. 2). In generation ¢ following the change in envi-
ronment, the phenotype z follows a normal distribution
(p4z]), with variance P and mean d, (our notation emphasizes
the distance of the population mean from the optimum at z
= 0; see fig. 2). The absolute mean fitness in generation ¢ is
W, = | p(DW(2) dz.

We assume discrete, nonoverlapping generations and pop-
ulation growth described by (1), so that

=1
Ny = No [ W;. 3)
i=0
By comparison, many models of discrete population growth
take the form

N = N, tht(Nt)9

where 0 = g(N) = 1 expresses density dependence depress-
ing population growth below the maximum possible in gen-
eration f, W,. In using (1), we assume that the absolute pop-
ulation mean fitness (W,) is a function of the single pheno-
typic variable (z) and is independent of N;; that is, the evo-
lutionary dynamics of z and, consequently, W, are density
independent. Moreover, we assume that g = 1. Although this
is probably a reasonable approximation in particular cases
(such as for colonizing propagules), in general, setting g =
1 establishes an upper bound to population decline given that
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-1 -1
N, = No [ WigiN)) = No [ Wi

i=0 i=0
Thus, the density-independent population dynamics we use
in our analysis (eq. 3) provide a kind of best-case scenario
for deterministic population persistence.

By standard results (Lande 1976; Bulmer 1985; Falconer

1989), the distance of the mean phenotype from the optimum,
d;, changes each generation by

Ad, = —h? d,PI(P + w), 4

where 42 is the heritability of z. Assuming for simplicity fixed
P and h2, the mean phenotype approaches the new optimum
geometrically:

d, = kdy, (5)

where k = [w + (1 — K2)P)/(w + P), and dj is the initial
distance of the population mean from the optimal phenotype.
The quantity k determines the evolutionary inertia of the
character; 0 = k = 1. If k = 1, there is no evolution and, for
given w and P, if k = w/(w + P), evolutionary equilibrium
is approached at the maximum speed possible. The dynamics
of mean fitness are described by '

W, = W exp[—d?/2(P + w)], (6)

where W = W, VW/(P + w) is the growth rate of a pop-
ulation with the mean phenotype at its optimum (d = 0).

Assume Wy < 1, so that without evolution, extinction is
inevitable. In this model, natural selection increases mean
fitness (Lande 1976). Were a population to achieve its evo-
lutionary equilibrium in this environment, its growth rate
would equal its mean fitness maximum, W (which is less than
Wmax because of the continual generation of suboptimal phe-
notypes assumed in our quantitative-genetics formulation).
Even with evolution, if W is less than one, persistence is
impossible in the novel environment, because a population
with a maximal mean fitness of less than one certainly de-
clines to extinction (Lynch et al. 1991), as in the case of no
evolution (fig. 1A). In contrast, if W > 1, a population can
potentially persist (fig. 1B). There are two cases to consider:
(1) extinction in the novel environment is likely to be avoided
(i.e., N, is always above N_), because W, increases sufficiently
fast (trajectory a in fig. 1B); (2) although a growth rate ex-
ceeding unity is evolutionarily feasible, the population none-
theless is highly vulnerable to extinction, because its size
dips below N, for a period of time (trajectory b in fig. 1B).
In the latter case, population size declines, passing below N,
at time #g, until mean fitness exceeds one after a time #g. The
population then grows but continues to remain below N, until
time 7p.

If a population’s density is initially below N,, then tg = 0.
If Ny > N, then using equations (3)-(6) and some algebraic
manipulations, we derived an implicit expression for the times,
tg and tp, at which N, = N.. These times are the roots ¢ of

. Bofl — k*

tlog W 2 ( T~

where Bg = d%/(w + P) (measuring the degree of initial
maladaptation), and vo = NNy (indicating how close the
initial population is to its extinction vulnerability threshold).

) = log v, )
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Fic. 3. Combinations of initial population densities and degrees

of initial maladaptation leading to likely population persistence or
high extinction risk for five levels of heritability (solid curves: A2
= 0.1, 0.25, 0.5, 0.75; dashed curve: 42 = 1). For a population
evolving according to the quantitative-genetic model described in
the text and figure 2, the graph indicates those initial population
densities and initial phenotypic means for which it either remains
above or falls below N.. The initial population size (Np) is scaled
inversely to N (i.e., small values of v indicate large initial densities
relative to the critical density). The initial degree of maladaptation
(Bo) is measured as the squared initial distance (d(z)) of the population
mean phenotype from the fitness optimum scaled to the width (w)
of Gaussian stabilizing selection and phenotypic variance (P) (see
fig. 2; W = 2.59; P = 0.1w). For each level of heritability, popu-
lations with vg and Bg below the curve persist deterministically,
because they are bounded above N, by sufficiently rapid evolution;
those above the curve eventually decline below N, and become
highly vulnerable to rapid extinction by demographic stochasticity.

Numerical analysis of equation (7) reveals either zero or two
biologically meaningful (i.e., real, nonnegative) roots for
each combination of parameters. Cases with no roots cor-
respond to trajectory a in figure 1B, and those with two roots
correspond to trajectory b.

Figure 3 shows those combinations of initial population
densities and degrees of initial maladaptation that lead to
likely persistence, versus high extinction risk (case [1] vs.
case [2]) for five different heritabilities (k2 = 0.1, 0.25, 0.5,
0.75, 1). Populations which are initially above N, (corre-
sponding to vop = N/Ny < 1) and experience a mild envi-
ronmental change (8o small) will certainly be rescued by
evolution (i.e., N; remains above N.) over a wide range of
initial population densities and heritabilities. In contrast, with
more drastic environmental changes (B¢ large), only popu-
lations greatly exceeding their threshold densities (vg < 1)
with high heritabilities are likely to be rescued by natural
selection. At low heritabilities and intermediate levels of en-
vironmental change, the range of initial population sizes con-
sistent with N staying always above N, drops off in an almost
step-like fashion.

Figure 4 illustrates the dependence of the time g at which
a population first reaches N, on its initial degree of mala-
daptation (Bg). Populations that are sufficiently mildly mal-
adapted (Bg less than a critical level, B*; see fig. 3) never
fall below N,. For populations that are initially more severely
maladapted (B9 > B*), tg declines with increasing g. The
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Fic. 4. The time tg a population will first reach the critical density
as a function of its initial degree of maladaptation for the quanti-
tative-genetic model (W = 2.59, P = 0.1w, h2 = 0.5; Ny = 2N, <>
vg = 1/2.). The solid curve shows the smaller roots of equation (7)
when they exist (Bg > B*). The dot-dashed curve indicates anal-
ogous times for the case of no evolution (eq. 2).

dependence of tg on B¢ is strong for populations that are not
severely affected, but is weak for highly maladapted popu-
lations. For comparison, the relation between fz and B¢ in
the extreme case of no evolution (W, = W, for all t; see eq.
2) is shown by the dot-dashed curve. Evidently, the major
effect of evolution is to keep mildly maladapted populations
from ever reaching critically low levels. However, for pop-
ulations bound to experience critically low densities (i.e., Bg
> B*), evolution causes almost no delay in the time such
levels are first reached.

The dependence of ¢z on initial population density, scaled
as vy = NNy, is qualitatively similar to the dependence of
tg on Bg shown in figure 4 (see also fig. 5B, solid curve).
Populations that are initially sufficiently large (vg less than a
critical number, v*) will never reach critically low densities.
For populations initially closer in size to N,(v* < vg < 1), tg
decreases with decreasing initial population size (increasing
vg) but is essentially independent of Ny for initial sizes close
to (or, obviously, below) N.. There is also a near-threshold
effect of evolution on 7g: a population’s initial size tends to
be such that reaching critical densities is avoided entirely, or
they are reached almost as quickly as in the absence of evo-
lution.

If W is sufficiently large, for fixed values of the other
parameters and initial conditions there is no feasible solution
for equation (7), implying the population never declines be-
low N.. This suggests that populations with relatively high
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potential growth rates in a novel environment should be more
able to escape extinction via evolution, compared to popu-
lations with lower potential growth rates.

We have assumed populations below N, are highly vul-
nerable to extinction resulting from demographic stochastic-
ity. However, provided they manage to avoid extinction, such
populations continue to adapt and, eventually, will grow
again (if W > 1). The time z needed for a population to
evolutionarily recover from a demographic decline (defined
as the first time at which W, = 1) can be shown from equations
(4)-(6) to satisfy

tg = [log log W — log(Bo/2)]/log k2. (8)

This shows that tg increases logarithmically with the degree
of initial maladaptation ¢ but is independent of the initial
population density (vg). That is, an initially more severely
maladapted population requires more time than a mildly mal-
adapted population to evolve the sufficiently high mean fit-
ness that allows it to increase in density.

Even a growing population that is below its critical density
faces a high risk of extinction. However, provided the pop-
ulation continues to avoid extinction, at some point its density
will grow above N, after which time the population is no
longer at a significant risk of extinction owing to demograph-
ic stochasticity. For parameter combinations that place a pop-
ulation at high extinction risk, the first time ¢p that a popu-
lation’s density could climb above N.—so that its chances of
persistence are substantially increased—is the larger of the
(two) roots of equation (7).

The difference, tp — tg, between the first and last times a
population would encounter critically low densities defines
the period at which the population will be at high risk of
extinction owing to demographic stochasticity (see fig. 1B).
The longer a population is below N, and the smaller its
abundance, the more likely it is to become extinct. To the
extent that population sizes below N, have similarly high
probabilities of extinction, a population’s risk of rapid ex-
tinction increases with the period (tp — tg) during which its
size is deterministically below N.. The dependence of this
period on initial maladaptation or initial population size is
shown in figure 5. For larger initial degrees of maladaptation,
th& duration of time at risk grows linearly with Bg (fig. 5A).
In contrast, the period at risk is relatively independent of
initial density for initial densities near N, (vq closer to 1; fig.
5B).

Relations (7) and (8) show that evolutionary and demo-
graphic dynamics of this model depend essentially on four
quantities, two of which characterize a population’s capacity
for evolution and maximal growth in the novel habitat (k and
W), and two measure its initial degree of maladaptation and
density (Bg and vg). Of these, W is probably the most difficult
to determine empirically, because it is the long-term growth
rate of a population that is initially in decline and, thus, most
vulnerable to rapid extinction. However, both (7) and (8) can
be rewritten, using the substitution W= Wy exp[Bo/2] (see
eq. 6), in terms of the rate of initial population decline in the
novel environment (W), a more readily observable quantity.

A Continuous-Time, One-Locus Model

To determine the sensitivity of the results in the previous
section to the particular form of model (discrete-time, quan-
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FiG. 5. The period at high risk of extinction as a function of initial
maladaptation (A), or initial density (B), for the quantitative-genetic
model. Parameters are as in figure 4 (graph A: vy = 1/2; graph B:
Bo = 4). Solid curves show 7g (first risk of extinction using the
heuristic criterion N < N,; fig. 4) and dashed curves show zp (last
risk of extinction, i.e., last time when N < N_; larger roots of eq.
7) as functions of Bg or vg. For each value of Bg or vy, the period
of high extinction risk is the distance between corresponding points
on the upper and lower curves: fp — tg. Populations with mild
degrees of initial maladaptation (Bp < B*) or large initial densities
(vo < v*) never fall below N, thereby avoiding high extinction
risks.

titative genetic), we analyzed a substantially different model:
a diploid, diallelic, one-locus genetic model with continuous
selection and density-independent population growth (Crow
and Kimura 1970; Nagylaki and Crow 1974). Here a popu-
lation’s infinitesimal per-capita growth rate is determined by
its mean Malthusian fitness #,, which itself depends on the
frequencies p; and g, of alleles A; and A, at time 7. Assuming
the conditions for Hardy-Weinberg proportions hold (Na-
gylaki and Crow 1974), i, = p?myy + 2pgmia + gimaa,
where m;; is the Malthusian fitness of genotype A;A; and my
= mjy (Crow and Kimura 1970; Nagylaki and Crow 1974).
To focus on cases in which evolution can potentially save a
declining population from extinction (fig. 1B), we assumed
that in the novel environment mj; = Mmpyax > 0 and mpy =
Mmax — 8, Where s = mp,x. In addition, we assumed hetero-
zygote fitness (m13) is intermediate to the two homozygote
fitnesses, thus, the initial frequency of Aj, go, gauges a popu-
lation’s initial degree of maladaptation (analogous to Bo).

Under these conditions, we combined standard results
(Crow and Kimura 1970, pp. 191-193) with the population
growth equation, dN/dt = mN, to derive the times tg, tg, and
tp. In the case of no dominance (my3 = mmax — $/2), the first
time a population encounters critically low densities, ¢g, and
the last time, tp, are (when they exist) the smaller and larger
nonnegative roots of

Hmmax — s1 + 2 log{qgo + [1 — golexp[st/2]} = log v, (9)

where vy = N/Nj as above. Here the time tg needed to evolve
m = 0 so that the population can grow is

tg = 2{log[(s/mmax) — 11 + loglgo/(1 — go)1}/s. (10)

The dependencies of the time required to reach N, tg, and
the period at risk, tp — g, on the initial degree of maladap-
tation, gg, are shown in figure 6.
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FiG. 6. The period at high risk of extinction as a function of initial
maladaptation (A), or initial density~! (B), for the one-locus model
with no dominance (mpax = 0.1, s = 0.2; graph A: vg = 1/2; graph
B: go = 0.9). Solid curves show zg (first risk of extinction, i.e., first
time when N < N_; smaller roots of eq. 9), and dashed curves show
tp (last risk of extinction, i.e., last time when N < N; larger roots
of eq. 9) as functions of go (initial frequency of an allele with
deleterious effects in the new environment) or vo. For each value
of gg or vg, the period of extinction risk is the distance between
corresponding points on the upper and lower curves: fp — fg. Pop-
ulations with sufficiently small frequencies of the deleterious allele
(go < g*) or large enough initial densities (vo < v*) avoid high
extinction risk. Dot-dashed curves represent times at first risk of
extinction (zg) as a function of gg or of vy without evolution.

This one-locus, continuous-time model shares the quali-
tative features of the discrete-time, quantitative genetics mod-
el described above (compare figs. 5 and 6). Populations that
are initially mildly maladapted (go < g*) or sufficiently large
(vo < v*) will never reach critically low densities. Popula-
tions that are initially more severely maladapted (g0 > ¢*)
or smaller (vy > v*) will be highly vulnerable to extinction.
For such populations, the time when the critical density is
first reached, ¢z, decreases with increasing go and vy (fig. 6,
solid curves). Comparing these times to those in the case of
no evolution (i, = myg; dot-dashed curves in fig. 6), it is
apparent that the major effect of evolution is to prevent a
population from deterministically reaching critically low den-
sities altogether. The time g at which population size would
begin to grow (given extinction is avoided) and the period
at high risk, tp — tg, both increase with go and vo. Similar
qualitative results hold for clonal, haploid, and gametic dip-
loid selection, which are all mathematically similar to the
case of no dominance described above (Crow and Kimura
1970; Nagylaki and Crow 1974).

DiscussIioN

Our analyses reveal what we suspect are general features
of the interplay between evolution and demography in novel
environments. In particular, our findings indicate that only
large populations that are initially not too severely maladap-
ted might be expected to escape extinction resulting from
demographic stochasticity. Populations that are initially more
severely maladapted or initially small will reach critically
low sizes sooner, and—should they happen to avoid imme-
diate extinction—remain at dangerously low densities longer
than larger, less severely affected populations. Only large or
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mildly affected populations are expected to endure in the face
of large environmental change. However, even large initial
population sizes are no buffer against especially large
changes. Moreover, unless colonizers are already well-adapt-
ed to the novel habitats they encounter, only colonizing
groups (including deliberately introduced propagules) of
large size or large ultimate maximal growth rates can be
expected to flourish in exotic environments. This suggests a
potential explanation for conservatism in species niches over
evolutionary time (Holt and Gomulkiewicz unpubl. data).

These intuitively reasonable conclusions could be reached
using verbal arguments. The models presented here allow the
sharpening of this intuition. For instance, in the quantitative-
genetics model, there is a near-linear relationship between
the period at high risk of extinction and a quantitative mea-
sure of initial maladaptation (fig. 5A), and a step-like rela-
tionship between the range of initial densities consistent with
likely persistence and the same measure of maladaptation
(fig. 3). This latter property is consistent with data, from
human-mediated species introductions, on the relation be-
tween propagule size and establishment success (e.g., Pimm
1991). Our analyses also reveal unanticipated qualitative fea-
tures, including that evolution does little to slow the approach
to critically low densities of populations destined to reach
such densities (figs. 4, 6).

Lenski and Bennett’s (1993) experimental results on the
evolution of thermal tolerance in Escherichia coli are con-
sistent with our theoretical expectations. This is a species
with potentially large maximal growth rates and thus would
seem to have a high chance of being rescued by evolution,
compared with most other species. Yet even in this case, most
populations failed to evolve sufficiently to persist in thermal
environments outside the ancestral population’s ‘‘thermal
niche” (those temperatures at which chemostat populations
can be maintained indefinitely under serial dilution).

Many published tables show that there are species with
large maximal growth rates in environments to which they
are well-adapted (e.g., Blueweiss et al. 1979). However,
growth rate is a joint property of phenotype and environment.
Species near the edges of their geographic range, or, more
broadly, the limits of their ecological niche, tend to have low
growth rates. Thus, our results should pertain to some pop-
ulations in nearly all species. Furthermore, our models sug-
gest that species that never have large maximal growth rates
(e.g., resulting from large body size, specialized require-
ments, etc.) should be particularly vulnerable to extinction
in changed environments.

It is difficult to relate our findings to most empirical and
experimental studies of populations’ rates of evolutionary
progress under selection. The reason is simple. Empiricists
are interested in studying responses to selection, which of
course cannot be observed in populations that become ex-
tinct. Great effort is often expended in setting up conditions
that ensure populations will persist. However, the rates of
progress under selection appropriate for questions of evo-
lutionary rescue we have addressed are those specifically
associated with environments in which populations are prone
to extinction.

The simple models presented above ignore a number of
potentially important evolutionary processes. Still, we be-
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lieve our results place upper bounds on the chances of pop-
ulation persistence, because other evolutionary forces tend
to either increase maladaptation (e.g., most mutations; Houle
et al. 1992) or reduce genetic variance (e.g., drift) and there-
fore slow a population’s evolutionary response to a changed
environment. Demographically, our assumption of density
independence ensures, as explained above, a kind of maximal
scope for deterministic population persistence.

An important limitation of the above models is that we
assumed closed populations. Recurrent migration into an
open population could conceivably either foster or hamper
evolutionary rescue by selection. Recurrent migration rescues
a population demographically, for if migrants appear in each
generation, the population never actually becomes extinct
(this implicitly assumes a source-sink structure; Holt 1993).
These migrants, moreover, could provide an infusion of ge-
netic variation upon which local selection can act, possibly
allowing a sink population to evolve into a source. However,
immigrants will, in general, be maladapted to the local en-
vironment, and gene flow could thus compromise the effects
of local selection (e.g., Wright 1931). Evaluating the relative
magnitudes of these opposing effects is a challenging task
for future work. Still, our models suggest that the reciprocal
of the time a population would first reach critically low den-
sities (1/tg) may provide a rough guide for the frequency of
migration episodes required for a population to persist be-
cause of regular immigration or introductions. The results
above should apply to combined population and evolutionary
dynamics between such episodes.

Introducing a critical density below which a population is
at a significantly increased risk of rapid extinction, as was
done here, should be viewed as a heuristic approximation to
a full analysis of extinction risk in a changed environment.
Such a full analysis would portray population and evolu-
tionary dynamics with genotypically explicit stochastic birth-
death models, coupling standard approaches to assessing ex-
tinction risk in genetically homogeneous populations (Ga-
briel and Biirger 1992; Lande 1993; Mangel and Tier 1993)
with population-genetic models for evolution in finite pop-
ulations (Wright 1931; Fisher 1958; Moran 1958; Lande
1976). The desired result would be a frequency distribution
for times to extinction in evolving populations, taking into
account how the probability of extinction increases as mean
effective population size decreases, and variance in a fluc-
tuating environment increases. The parameters of this dis-
tribution, we surmise, will include initial population size and
a measure of the initial degree of maladaptation, as did the
above models.

The concept of a critical density is a broadly useful heu-
ristic device for dealing with several distinct hazards asso-
ciated with low population size. Although we invoked de-
mographic stochasticity to motivate N, it should be noted
that other biological factors (such as inbreeding depression
or Allee effects) can also lead to sharply increased extinction
risks at low densities.

Our results complement work on evolutionary rescue in
continuously changing environments (Pease et al. 1989;
Lynch et al. 1991; Lynch and Lande 1993; Biirger and Lynch
1995) by highlighting the demographic risks faced even by
populations with the genetic capacity to evolve fitness suf-
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ficient for deterministic persistence in a new environment.
Our findings suggest, alas, that only mildly affected popu-
lations at high natural densities can reasonably be expected
to be rescued by evolution in novel environments.
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For two centuries, biologists have recognized that the ex-
traordinary diversity of floral traits, such as size, shape, color,
and odor, is a consequence of the ecological and evolutionary

interactions between plants and their pollinators (Sprengel
1793; Darwin 1877; Miiller 1883; Leppik 1957; van der Pijl
1961; Baker 1963; Grant and Grant 1965). Natural selection



