CHEMISTRY
 Error Analysis for Laboratory Reports

There are three steps in error analysis of most experiments.

1. Propagation of errors can be performed even before the experiment is performed.
2. Measuring the errors is done during the experiment.
3. Comparison with accepted values is performed after the experiment is completed.

This means a numerical error analysis, not a post-experimental accounting of what you could do to improve your results.
Available source of information on error analysis is in Chapter 2 of your laboratory textbook.

Your laboratory report needs to include the following:
\checkmark For three or more point repetitions, do the average and standard deviation for each point (see chapter 2 of the textbook or a quantitative analysis text).
\checkmark Propagate measurement errors through calculations.
\checkmark Report all calculated values with error and units attached, e.g. $4.2 \pm 0.1 \mathrm{~mL}$.
\checkmark Compare results with accepted and/or literature values

Example of Propagation of Errors

One of the experiments involves measuring the heat capacity ratio for a certain gas, say Argon. Two equations are used in this experiment:
$c=v \lambda$ and $\quad \gamma=\frac{\mathrm{Mc}^{2}}{\mathrm{RT}}$ where γ is the heat capacity ratio, $\frac{\mathrm{C}_{\mathrm{p}}}{\mathrm{C}_{\mathrm{v}}}$.
I. The variables are v, λ, and T.

1. Estimate the error in the measurement of these three quantities. To do this you must decide how accurate the measurement was to within a certain number of units and you must be realistic.
2. Average values \pm uncertainties

$$
\begin{aligned}
& v=2207 \pm 2 \mathrm{~Hz}, \\
& \lambda=144.8 \pm 0.5 \mathrm{~mm} \\
& T=296.8 \pm 0.2 \mathrm{~K} .
\end{aligned}
$$

Since we must use the measured values to find c first, we must first propagate through that equation to find the error in the calculated value of c.
Use equation 52 on page 58 of the text. In this case, $\mathrm{F}(\mathrm{x}, \mathrm{y})=\mathrm{F}(v, \lambda)=c=v \lambda$.

$$
\Delta^{2} F=\left[\left(\frac{\partial F}{\partial x}\right)^{2} \Delta^{2} x+\left(\frac{\partial F}{\partial y}\right)^{2} \Delta^{2} y\right]
$$

Substituting c in for F gives an equation of the form:

$$
\Delta^{2} c=\left[\left(\frac{\partial c}{\partial v}\right)^{2} \Delta^{2} v+\left(\frac{\partial c}{\partial \lambda}\right)^{2} \Delta^{2} \lambda\right]
$$

After the actual derivations:

$$
\Delta^{2} c=\lambda^{2} \Delta^{2} v+v^{2} \Delta^{2} \lambda
$$

Plugging the numbers from above into this equation gives

$$
\Delta^{2} c=(144.8)^{2}(2)^{2}+(2207)^{2}(0.5)^{2}=83,868.2+1,217,712.2=1,301,580.4
$$

and

$$
\Delta c=1140.8
$$

The result should be written as $\mathbf{c}=\mathbf{3 1 9 . 5} \pm \mathbf{1 . 1} \mathbf{~ m} / \mathbf{s e c}$
II. Value of γ and its propagated error.

$$
\gamma=\frac{M c^{2}}{R T}=\frac{0.039948(319.5)^{2}}{8.324(296.8)}=1.65
$$

$\mathrm{M}_{\mathrm{Ar}}=39.948 \mathrm{~g} / \mathrm{mol}=0.039948 \mathrm{Kg} \mathrm{mol}^{-1}$
Gas constant $\mathrm{R}=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
$\mathrm{T}=296.8 \pm 0.2 \mathrm{~K}$ and $\mathrm{c}=319.5 \pm 1.1 \mathrm{~m} / \mathrm{sec}$

The propagation equation will look like:

$$
\Delta^{2} \gamma=\left[\left(\frac{\partial \gamma}{\partial c}\right)^{2} \Delta^{2} c+\left(\frac{\partial \gamma}{\partial T}\right)^{2} \Delta^{2} T=\left(\frac{2 M c}{R T}\right)^{2} \Delta^{2} c+\left(\frac{-1 M c^{2}}{R T^{2}}\right)^{2} \Delta^{2} T\right]
$$

Again plugging in the values from above into the equation $\Delta^{2} \gamma$ becomes:

$$
\Delta^{2} \gamma=\left(\frac{2 x(0.039948) x 319.5}{8.314 x(296.8)}\right)^{2}(1.1)^{2}+\left(\frac{-0.039948 x(319.5)^{2}}{8.314 x(296.8)^{2}}\right)^{2}(0.2)^{2}=1.29 \times 10^{-4}+1.24 \times 10^{-6}
$$

$\Delta \gamma=0.01$ and then the value for the heat capacity ratio with its error is then

$$
\gamma=1.65 \pm 0.01
$$

Note that from the above propagation of error one could point out which quantity contributes the most to the error. The first term $\left(1.29 \times 10^{-4}\right)$ is 2 orders of magnitude larger than the second term. By improving the way c is measured the error on γ could be reduced.

