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EINSTEIN’S MAXIM 
If you cannot measure it, you cannot know it. 
A. Einstein 
POSHUSTA’S CORROLARY 
That applies to errors too. 
R. D. Poshusta 
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Introduction 

There are three steps in error analysis of most experiments. The first, propagation of errors, can be 
performed even before the experiment is performed. The second, measuring the errors, is done during the 
experiment. And the third, comparison with accepted values, is performed after the experiment is 
completed. For this discussion we suppose that an experimental procedure exists that uses a variety of 
instruments to measure several quantities, x1, x2… xn, and that these quantities enter a computation or 
formula, F(x1, x2… xn) that yields the ultimate desired value or objective of the experiment. Errors can be 
associated with each measurement or instrument, with the procedure, and with the value F. The primary 
purpose of error analysis is to determine the confidence that should be placed in the F-value. 

EXAMPLE 

Consider the example experiment for measuring the heat of vaporization of water. The procedure consists 
in measuring the equilibrium boiling temperature of water at several values of atmospheric pressure. The 
apparatus consists of a boiling flask and thermometer below a refluxing condenser and a manometer all of 
which can be partially evaluated and sealed from the laboratory atmosphere. Then two measurements are 
made repeatedly: temperature Ti and corresponding pressure Pi for trials i=1, 2… N. The desired quantity is 
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atmosphere). The data values {Ti, Pi} are to be used to compute ∆H as well as to determine the uncertainty 
in ∆H. 

The first step will be to make a least squares fit of a straight line to a plot of ln (P/P0) versus 1/T. The slope, 
a, of this fit will enter the calculation: ∆H = -R a. Of course the slope is a function of all data points and it 
will be required to find the errors in a due to errors in measuring temperatures and pressures. 

 

A. Propagation of Errors 

The purpose of this step is to estimate the highest precision that can be achieved with a given experiment 
design. In fact, it is a good idea to perform this step as part of designing the experimental approach. By 
propagation of errors you can answer important questions about the precision of F:  

1. “Which measurement or instrument introduces the largest error?”  

2. “Which instrument should be replaced first with a more precise one?” 

3. “Are some instrument readings or procedural steps more critical than others?” 

4. “Is this experimental design adequate for the required precision in F?” 



The fundamental formula for propagating errors is this: 
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Where δF is the uncertainty or error in the computed quantity F, δxi is the uncertainty in the measurement 

of xi, and 
∂
∂

F
xi

 is the partial of F(x1, x2, ;xn) with respect to xi.   

In words, the uncertainty in the value of F is the sum of terms that contain the uncertainties in the 
component measurements and the rate of change of F with respect to those components. The terms are 
squared to avoid accidental cancellation of errors when some partial derivatives are negative. 

A similar formula, for the relative errors, sometimes simplifies the propagation of errors: The 
simplification occurs if F is a product or quotient of the xi values; then the propagation formula reduces 
to:  
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In words, if F is a product or quotient of the xi values; then the square of the relative error in F is the 
sum of the squares of relative errors of each component measurement. 

EXAMPLE 

Since the uncertainty in ∆H is δ∆H = R δa, we examine the uncertainty in the slope of ln (P/P0) versus 1/T. 
First we can reasonably assume that the slope can be determined from only two data pairs (Pi, Ti) and (P1, 
T1); we will find the uncertainty in slope from the uncertainty in pressure and temperature at these two data 
points. Further, it is reasonable to assume both points contribute the same amount to the uncertainty: δ∆H = 
2 R δai. Here δai is the uncertainty in the slope due to data pair (Pi, Ti). To estimate δai, we suppose that the 
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Now suppose that temperature is read to a precision of δT~0.01 (the thermometer is marked in 0.05 
increments and we interpolate by eye to one fifth of this), and suppose that pressure is read to a precision 
of δP~0.02 torr. Let us take (P1, T1) near the high temperature limit: (760 torr, 373K), and take (Pi, Ti) near 
the low temperature: (17 torr, 298K). These are only estimates, but that is all we require for δa. By 
substituting into the previous formula we find δai ~ 0.16K, a ~ -5500 K, and hence δ∆H ~ 2 (R 0.16K). In 
MKS units this is δ∆H ~ 3 joule mole-1. If the instrument errors are the only errors, we should expect a 
precision of about 3 joule/mole; other sources of error can increase this uncertainty. 

Further, the contribution of the pressure term to δa is only 0.04 torr while that of the temperature term is 
0.16K. Hence, the precision of ∆H can be increased by using a thermometer that can be read to a precision 
δT = 0.001K but improving the pressure measurements alone will not significantly increase the precision.  

The instruments selected for this experimental design will yield heats of vaporization with precision of 
about 3 joule/mole. For water, ∆Hvap is about 40 kJ/mole so that the uncertainty will be only about 0.1 ppt 
or 0.01%. 



B. Measuring Errors 

Now we come to the step in which the errors are actually measured. Without this we do not really know 
how big the errors are (Einstein’s maxim).  We have an estimate of the precision that can be achieved using 
the instruments described above, but there may be additional errors that we have not accounted for. Hence 
we will use the data from the experiment to obtain an experimental measure of errors from all sources. For 
this we rely on statistical analysis of repeated measurements. 

Mean and Standard Deviation 

When the same quantity is measured several times, we use the standard deviation from the mean as a 
measure of its precision (error). Truly random errors will cause a “normal”; distribution of measured values 
and ~60% of these values will lie within one standard deviation from the mean. With only a few 
measurements we cannot know that the distribution is “normal” but we usually assume it is.  

Definition: For a set of N measurements {a1, a2... aN}, the mean and standard deviation are:  
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one measurement exists; we measure errors by repeating the measurement. Note also that the σa measures 
the “width” of the distribution of values about the average. 

Least squares fitting 

See also, Experiments in Physical Chemistry, by Shoemaker, Garland, and Nibler [McGraw-Hill, 5th Ed., 
1996] appendix XXII. 

In many experiments it is the relationship between two variables that is sought. In our example, we seek 
the slope of ln (P) versus 1/T. In such cases the data consists of pairs (xi, yi, i = 1, 2... N) and these pairs 
(also called data points) are fit to a “model function” in a form y=f(x). The conventional way to do this is 
to minimize the squared deviation between the model and the data. Namely, we adjust the function f(x) 
until the quantity χ2 is minimum: 
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Here N is the number of data points, and m is the number of fitting parameters in f(x).  

In a linear least squares fit the model function is f(x) = ax + b and the slope, a, and intercept, b, are varied 
to minimize χ2; there are m=2 fitting parameters. Clearly, the statistical information contained in the data 
set can be used to extract the uncertainties of the fitting parameters. References will show how these 
uncertainties are computed. 

For linear least squares fitting one may use the slope and intercept functions of MathCad. Uncertainties of 
the slope and intercept can be calculated as shown in the MathCAD file scicomp/datanal/lstsq_1.mcd. 

EXAMPLE 

The following are data for the boiling temperature and total pressure for water obtained in a heat of 
vaporization experiment.  

 

P/torr T/C 

23.8 25.0 

31.8 30.0 

55.3 40.0 

68.3 44.0 



118.0 55.0 

196.1 66.0 

277.2 74.0 

369.7 81.0 

400.6 83.0 

A linear least squares fit of ln (P/760 torr) versus 1/T gave a slope of -5.162 103 K and hence ∆Hvap = 
42.916 kJ/mole at the average temperature 328K. From the calculated uncertainty of the slope, that of the 
heat of vaporization is found: δ∆Hvap ~ 6 joule/mole. Then the result of the experiment should be 
reported: ∆Hvap (328K) = 42.916±0.006 kJ/mole. For the details of the calculations, see 
scicomp/datanal/water.mcd. 

C. Comparison and Discussion of Errors 

Finally, you should search for literature values or accepted values to compare with your measurements. 
This constitutes the third leg of a complete error analysis.  

A complete discussion will include  

1. The deviation between this experimental value and the accepted value. Try to account for this 
difference. Is it because the experiment was not performed at the same conditions as the accepted 
value? Is the difference significant (in view of the uncertainties)?  

2. A comparison of the estimated errors due to propagation of error with the measured error(s). If the 
latter are much larger than the former, can you find additional sources of error to explain the 
difference? 

3. Suggestions to improve the precision and accuracy of the experiment. What changes in the instruments 
or procedure can reasonably be made to improve the measurements? [Be able to defend your 
suggestions.]  

EXAMPLE 

The accepted heat of vaporization of water is 40.656 kJ/mole at 373KC and 44.016 kJ/mole at 298K 
[Atkins, Physical Chemistry, page C5]. Our result is ∆Hvap (328K) = 42.916; 0.006 kJ/mole. Assuming a 
linear variation of ∆H with T, our result lies 291 joule/mole higher than the interpolated value.  

The measured uncertainty in ∆H is 6 joule/mole and the estimate from propagation of errors is ~ 3 
joule/mole. This close agreement indicates there are no significant errors aside from those inherent in 
reading the thermometer and manometer. The measured value is somewhat larger than the propagation 
estimate; this might be due to additional errors in the experiment roughly the same size as from the 
propagation analysis, or it might be due to the approximations incorporated into the estimates for 
propagation of errors. One source of error not included in propagation of errors is the possibility that the 
boiling liquid is not quite in equilibrium with its vapor. 

Our value, ∆Hvap (328K) = 42.916±0.006 kJ/mole, is higher (~50 times the measured uncertainty in ∆Hvap) 
than the interpolated accepted value. This suggests a systematic error. We cannot tell from the present 
evidence whether the measurement is in error or the interpolation method is wrong. Some possible avenues 
for investigation include:  
(1) correct the vapor pressure for the presence of applied pressure (from the atmosphere) as described by 
Atkins (page 193), and  (2) improve the interpolation by using an expression for the temperature induced 
change in ∆Hvap (328K) = ∆Hvap (298K) + ∆Cp (328K-298K). 


